166 research outputs found

    Avalanche Size Scaling in Sheared Three-Dimensional Amorphous Solid

    Get PDF
    We have studied the statistics of plastic rearrangement events in a simulated amorphous solid at T=0. Events are characterized by the energy release and the ``slip volume'', the product of plastic strain and system volume. Their distributions for a given system size LL appear to be exponential, but a characteristic event size cannot be inferred, because the mean values of these quantities increase as LαL^{\alpha} with α3/2\alpha \sim 3/2. In contrast to results obtained in 2D models, we do not see simply connected avalanches. The exponent suggests a fractal shape of the avalanches, which is also evidenced by the mean fractal dimension and participation ratio.Comment: Accepted for publication in Physical Review Letter

    Extensional rheometry of mobile fluids. Part I: OUBER, an optimized uniaxial and biaxial extensional rheometer

    Full text link
    We present a numerical optimization of a "6-arm cross-slot" device, yielding several three-dimensional shapes of fluidic channels designed to impose close approximations to ideal uniaxial (or biaxial) stagnation point extensional flow under the constraints of having four inlets and two outlets (or two inlets and four outlets) and Newtonian creeping flow conditions. Of the various numerically-generated geometries, one is selected as being most suitable for fabrication at the microscale, and numerical simulations with the Oldroyd-B and Phan-Thien and Tanner models confirm that the optimal flow fields in the chosen geometry are observed for both constant viscosity and shear thinning viscoelastic fluids. Fabrication of the geometry, which we name the optimized uniaxial and biaxial extensional rheometer (OUBER), is achieved with high precision at the microscale by selective laser-induced etching of a fused-silica substrate. Employing a viscous Newtonian fluid with a refractive index matched to that of the optically transparent microfluidic device, we conduct microtomographic-particle image velocimetry in order to resolve the flow field at low Reynolds number (< 0.1) in a substantial volume around the stagnation point. The flow velocimetry confirms the accurate imposition of the desired and predicted flows, with pure extensional flow at an essentially uniform deformation rate being applied over a wide region around the stagnation point. In Part II of this paper [Haward et al., J. Rheol. submitted (2023)], pressure drop measurements in the OUBER geometry will be used to assess the uniaxial and biaxial extensional rheometry of dilute polymeric solutions, in comparison to measurements made in planar extension using an optimized-shape cross-slot extensional rheometer (OSCER, Haward et al, Phys. Rev. Lett., 2012)

    Intracellular Nanomaterial Delivery via Spiral Hydroporation

    Get PDF
    In recent nanobiotechnology developments, a wide variety of functional nanomaterials and engineered biomolecules have been created, and these have numerous applications in cell biology. For these nanomaterials to fulfill their promises completely, they must be able to reach their biological targets at the subcellular level and with a high level of specificity. Traditionally, either nanocarrier- or membrane disruption-based method has been used to deliver nanomaterials inside cells; however, these methods are suboptimal due to their toxicity, inconsistent delivery, and low throughput, and they are also labor intensive and time-consuming, highlighting the need for development of a next-generation, intracellular delivery system. This study reports on the development of an intracellular nanomaterial delivery platform, based on unexpected cell-deformation phenomena via spiral vortex and vortex breakdown exerted in the cross- and T-junctions at moderate Reynolds numbers. These vortex-induced cell deformation and sequential restoration processes open cell membranes transiently, allowing effective and robust intracellular delivery of nanomaterials in a single step without the aid of carriers or external apparatus. By using the platform described here (termed spiral hydroporator), we demonstrate the delivery of different nanomaterials, including gold nanoparticles (200 nm diameter), functional mesoporous silica nanoparticles (150 nm diameter), dextran (hydrodynamic diameters between 2–55 nm), and mRNA, into different cell types. We demonstrate here that the system is highly efficient (up to 96.5%) with high throughput (up to 1 × 106 cells/min) and rapid delivery (∼1 min) while maintaining high levels of cell viability (up to 94%)

    Volumetric evolution of elastic turbulence in porous media

    Get PDF
    Viscoelastic flow instability, which is compelled by elastic effects rather than inertia, can be driven to a chaotic state termed elastic turbulence (ET) manifested as strong velocity fluctuations with an algebraic decay in the frequency spectrum and increased mixing. We report the first spatiotemporally complete description of ET by considering a broad volume within a novel three-dimensional ordered porous medium, reconstructing flow at a micrometre characteristic length scale (Reynolds numbers≪1) via time-resolved microtomographic particle image velocimetry. Beyond a critical Weissenberg number of 2, we observe an elastic flow instability accompanied by an enhanced pressure drop with spectral characteristics typical of ET. Polymer chains in the ET flow state are advected along increasingly curved streamlines between pores such that they accumulate strain and generate a local flow instability evaluated per an established instability criterion based on local evaluation of elastic tensile stress and streamline curvature. The onset of ET leads to increased pore-scale resistance and positive feedback on upstream streamline curvature. ET is thus characterized by a continuous evolution between states of laminar and unstable flow: pores with unstable flow flood their adjacent peers and thus encourage straightened streamlines and flow stability across the array, while positive feedback from flow resistance on streamline curvature results in the instability propagating upstream along the array. By employing a geometrically ordered medium, we permit flow state communication between pores, yielding generalized insights highlighting the significance of spatial correlation and flow history, and thus provide new avenues for explaining the mechanisms of ET

    Precautionary Regulation in Europe and the United States: A Quantitative Comparison

    Get PDF
    Much attention has been addressed to the question of whether Europe or the United States adopts a more precautionary stance to the regulation of potential environmental, health, and safety risks. Some commentators suggest that Europe is more risk-averse and precautionary, whereas the US is seen as more risk-taking and optimistic about the prospects for new technology. Others suggest that the US is more precautionary because its regulatory process is more legalistic and adversarial, while Europe is more lax and corporatist in its regulations. The flip-flop hypothesis claims that the US was more precautionary than Europe in the 1970s and early 1980s, and that Europe has become more precautionary since then. We examine the levels and trends in regulation of environmental, health, and safety risks since 1970. Unlike previous research, which has studied only a small set of prominent cases selected non-randomly, we develop a comprehensive list of almost 3,000 risks and code the relative stringency of regulation in Europe and the US for each of 100 risks randomly selected from that list for each year from 1970 through 2004. Our results suggest that: (a) averaging over risks, there is no significant difference in relative precaution over the period, (b) weakly consistent with the flip-flop hypothesis, there is some evidence of a modest shift toward greater relative precaution of European regulation since about 1990, although (c) there is a diversity of trends across risks, of which the most common is no change in relative precaution (including cases where Europe and the US are equally precautionary and where Europe or the US has been consistently more precautionary). The overall finding is of a mixed and diverse pattern of relative transatlantic precaution over the period

    The nonlinear time-dependent response of isotactic polypropylene

    Full text link
    Tensile creep tests, tensile relaxation tests and a tensile test with a constant rate of strain are performed on injection-molded isotactic polypropylene at room temperature in the vicinity of the yield point. A constitutive model is derived for the time-dependent behavior of semi-crystalline polymers. A polymer is treated as an equivalent network of chains bridged by permanent junctions. The network is modelled as an ensemble of passive meso-regions (with affine nodes) and active meso-domains (where junctions slip with respect to their positions in the bulk medium with various rates). The distribution of activation energies for sliding in active meso-regions is described by a random energy model. Adjustable parameters in the stress--strain relations are found by fitting experimental data. It is demonstrated that the concentration of active meso-domains monotonically grows with strain, whereas the average potential energy for sliding of junctions and the standard deviation of activation energies suffer substantial drops at the yield point. With reference to the concept of dual population of crystalline lamellae, these changes in material parameters are attributed to transition from breakage of subsidiary (thin) lamellae in the sub-yield region to fragmentation of primary (thick) lamellae in the post-yield region of deformation.Comment: 29 pages, 12 figure

    Microdevices for extensional rheometry of low viscosity elastic liquids : a review

    Get PDF
    Extensional flows and the underlying stability/instability mechanisms are of extreme relevance to the efficient operation of inkjet printing, coating processes and drug delivery systems, as well as for the generation of micro droplets. The development of an extensional rheometer to characterize the extensional properties of low viscosity fluids has therefore stimulated great interest of researchers, particularly in the last decade. Microfluidics has proven to be an extraordinary working platform and different configurations of potential extensional microrheometers have been proposed. In this review, we present an overview of several successful designs, together with a critical assessment of their capabilities and limitations

    Promjene citokroma P450 jetre i mozga nakon višekratne primjene kokaina, samog ili u kombinaciji s nifedipinom

    Get PDF
    The objective of this study was to evaluate possible changes caused by multiple cocaine administration, alone and in combination with 1,4-dihydropiridine calcium channel blocker nifedipine, on cytochrome P450 levels both in the brain and liver. The experiment was done on male Wistar rats divided in four groups: control, treated with nifedipine (5 mg kg-1 i.p. for five days), treated with cocaine (15 mg kg-1 i.p. for five days), and treated with nifedipine and 30 minutes later with cocaine (also for five days). Total cytochrome P450 was measured spectrometrically in liver and brain microsomes. Multiple administration of cocaine alone and in combination with nifedipine did not change the brain P450 significantly. In the liver, nifedipine significantly increased P450 by 28 % vs. control. In contrast, cocaine significantly decreased P450 by 17 % vs. control. In animals treated with nifedipine and cocaine, cytochrome P450 increased 11 % (p<0.01) vs. control, decreased 12.5 % (p<0.001) vs. nifedipine group and increased 34 % (p<0.0001) vs. cocaine group. These results suggest that the cocaine and nifedipine interact at the metabolic level.Cilj je ovog istraživanja bio ocijeniti moguće promjene uzrokovane višestrukom primjenom kokaina kao jedinog agensa odnosno u kombinaciji s nifedipinom, 1,4-dihidropiridinskim blokatorom kalcijevih kanala, na razine citokroma P450 u mozgu i jetri štakora. Životinje (mužjaci Wistar štakora) podijeljene su u četiri skupine: kontrolnu skupinu, skupinu koja je primala nifedipin (5 mg kg-1 ip. pet dana), skupinu koja je primala kokain (15 mg kg-1 ip. pet dana) i skupinu koja je primala nifedipin te pola sata kasnije kokain (također pet dana). Ukupna količina citokroma P450 mjerena je spektrofotometrijski u mikrosomima jetre i mozga. Višestruka primjena samo kokaina odnosno u kombinaciji s nifedipinom nije značajno promijenila razine citokroma P450 u mozgu. U jetri je međutim nifedipin u odnosu na kontrolnu skupinu uzrokovao povišenje razina P450, za statistički značajnih 28 %. Kokain je uzrokovao statistički značajan pad razine P450 za 17 % u odnosu na kontrolnu skupinu. U životinja koje su primale kombinaciju nifedipina i kokaina razina citokroma P450 narasla je za 11 % (p<0.01) u odnosu na kontrolu, bila je 12.5 % (p<0.001) niža u odnosu na skupinu koja je primala nifedipin te viša za 34 % (p<0.0001) u odnosu na skupinu koja je primala samo kokain. Rezultati ovog istraživanja upućuju na interakcije ovih spojeva koje se odvijaju na razini metabolizm
    corecore