330 research outputs found
Results of static tests of a 1/4 scale model of the Boeing YC-14 powered-lift system
One quarter scale static ground tests of the Boeing YC-14 powered lift system were conducted for correlation with full scale test results. The 1/4 scale model utilized a JT-15D turbofan engine to represent the CF6-50D engine employed on the YC-14 advanced medium STOL transport prototype aircraft. The tests included evaluation of static turning performance, static surface pressure and temperature distributions, fluctuating loads, and accelerations of portions of the wing, flaps, and fuselage. Results are presented for the landing flap configuration over an appropriate range of fan pressure ratio as affected by several variables including ground height and vortex generator modifications. Static turning angles of the order of 60 deg were obtained. The highest surface pressures and temperatures were concentrated over the upper surface of the flaps in the region immediately aft of the upper surface blown nozzle
INVESTIGATION OF THE LOW-SUBSONIC STABILITY AND CONTROL CHARACTERISTICS OF A 0.34 -SCALE FREE-FLYING MODEL OF A MODIFIED HALF-CONE REENTRY VEHICLE
Low subsonic stability and control of a 0.34-scale free flying model of a half cone reentry vehicl
Full-scale wind tunnel-investigation of the Advanced Technology Light Twin-Engine airplane (ATLIT)
An investigation was conducted to evaluate the aerodynamic performance, stability, and control characteristics of the Advanced Technology Light Twin Engine airplane (ATLIT). Data were measured over an angle of attack range from -4 deg to 20 deg for various angles of sideslip between -5 deg and 15 deg at Reynolds numbers of 0.0000023 and 0.0000035 for various settings of power and flap deflection. Measurements were also made by means of special thrust torque balances to determine the installed propeller characteristics. Part of the investigation was devoted to drag cleanup of the basic airplane and to the evaluation of the effect of winglets on drag and stability
Aerodynamic characteristics of a 1/6-scale model of the rotor systems research aircraft with the rotors removed
A wind-tunnel investigation was conducted to refine the aerodynamic characteristics of the rotor systems research aircraft. For the investigation, a 1/6-scale model without a main rotor or a tail rotor was used. The model provided the capability for testing different engine nacelle sizes, engine pylon fairings, and tail configurations. The engine thrust effects were modeled by small engine simulators (fans). Data were obtained primarily over an angle-of-attack range from -13 deg to 13 deg at several values of sideslip. Stability characteristics and control effectiveness were investigated. The model with the scaled engine nacelles and the combination T-tail and lower horizontal tail displayed longitudinal and lateral-directional stability. Results show that by reducing the horizontal or vertical-tail span the longitudinal stability is decreased. Reducing the engine nacelle size increases the static stability of the model. Effective dihedral is essentially zero at 0 deg angle of attack and 0 deg wing incidence
An algorithm for determining program feasibility of a multi-mode PAM commutator telemetry system Technical report no. 10
Algorithm formulation for evaluation of strapping arrangement programs for PAM multimode commutation system of Saturn telemetry syste
Summary of Results Obtained in Full-Scale Tunnel Investigation of the Ryan Flex-Wing Airplane
The performance and static stability and control characteristics of the Ryan Flex-Wing airplane were determined in an investigation conducted in the Langley full-scale tunnel through an angle-of-attack range of the keel from about 14 to 44 deg. for power-on and -off conditions. Comparisons of the wind-tunnel data with flight-test data obtained with the same airplane by the Ryan Aeronautical Company were made in a number of cases
Statistical quality control applied to a telemetry system acceptance prodedure Technical report no. 13
Statistical quality control applied to telemetry system acceptance procedur
Low-Speed Measurements of Oscillatory Lateral Stability Derivatives of a 1/7-Scale Model of the North American X-15 Airplane
An investigation to determine the low-speed rolling, yawing, and sideslipping derivatives of a 1/7-scale model which was used to represent the original configuration and a modified configuration of the North American X-15 airplane has been conducted in the Langley free-flight tunnel. The original model was modified to approximately represent the final airplane configuration by reducing the size of the fuselage side fairings and changing the vertical-tail arrangement. The effects of various tail arrangements were determined for both configurations and the effect of small forebody strakes was determined for the modified configuration only
Subsonic Flight Tests of a 1/7-Scale Radio-Controlled Model of the North American X-15 Airplane with Particular Reference to High Angel-of-Attack Conditions
An investigation of the subsonic stability and control characteristics of an unpowered 1/7-scale model based on the North American X-15 airplane was conducted by using a radio-controlled model launched from a helicopter and flown in free-gliding flight. At angles of attack below about 20 deg. where the model motions represent those of the X-15 airplane, the model was found to be both longitudinally and laterally stable, and the all-movable tail surfaces were found to be very effective. The model could also be flown at much higher angles of attack where the model motions did not necessarily represent those of the airplane because of slight geometrical differences and Reynolds number effects, but these test results are useful in evaluating the effectiveness at these angles of the type of lateral control system used in the X-15 airplane. In some cases, the model was flown to angles of attack as high as 60 or 70 deg. without encountering divergent or uncontrollable conditions. For some flights in which the model was subjected to rapid maneuvers, spinning motions were generated by application of corrective controls to oppose the direction of rotation. Rapid recoveries from this type of motion were achieved by applying roll control in the direction of rotation
- …