4 research outputs found

    The effect of electric double layers, zeta potential and pH on apparent viscosity of non-Brownian suspensions

    No full text
    We carried out 3D simulations of monodisperse particle suspensions subjected to a constant shear rate with the view to investigate the effect of electrical double layers around the particles on apparent suspension viscosities. To this end, expressions for Debye length, zeta potential, and ionic strength (pH) of the liquid were incorporated into our in-house lattice Boltzmann code that uses the immersed boundary method and includes subgrid lubrication models. We varied the solids concentration and particle radius, keeping the particle Reynolds number equal to 0.1. We report on results with respect to the effect of pH in the range 9 through 12 and of Debye length on apparent viscosity and spatial suspension structures, particularly at higher solids vol?ume fractions, and on the effect of flow reversals.</p

    Two-fluid simulations of an aerated lab-scale bioreactor

    No full text
    We report the findings of a detailed assessment of various options for computational two-fluid RANS simulations of an aerated agitated 2-L bioreactor equipped with a single baffle and several dip tubes. The simulations were carried out by using the commercial flow solver ANSYS/Fluent. Our focus was on (1) the outlet condition at the liquid’s surface (i.e., including an air head space in the simulation yes or no); (2) the choice between the steady-state Multiple Reference Frames (MRF) approach for modelling the impeller rotation and the dynamic Sliding Mesh (SM) option; (3) the choice between two computational meshes (mosaic or polyhedral); and (4) the effect of using either the realizable k-ε model or the SST k-ω model for dealing with the turbulence in combination with different values for the fixed bubble size (either 1.8 or 2.8 mm). The final conclusion is that the SM impeller model in combination with a polyhedral computational mesh and the SST k-ω turbulence model is to be preferred. All simulations suffer from the occurrence of spurious velocities larger than the impeller tip velocity.</p

    A lattice Boltzmann approach to surfactant-laden emulsions

    Get PDF
    We present a pseudopotential lattice Boltzmann method to simulate liquid–liquid emulsions with a slightly soluble surfactant. The model is investigated in 2-D, over a wide parameter space for a single, stationary, immiscible droplet, and surface tension reduction by up to 15% is described in terms of a surfactant strength Λ (which roughly follows a Langmuir isotherm). The basic surfactant model is shown to be insufficient for arresting phase segregation—which is then achieved by changing the liquid–liquid interaction strength locally as a function of the surfactant density. 3-D spinodal decomposition (phase separation) is simulated, where the surfactant is seen to adapt rapidly to the evolving interfaces. Finally, for pendent droplet formation in an immiscible liquid, the addition of surfactant is shown to alter the droplet-size distribution and dynamics of newly formed droplets

    A porous-crust drying model for a single dairy droplet

    No full text
    The development of a novel numerical model for droplet drying is the topic of this paper. The three main stages of droplet drying are distinguished, viz. unhindered evaporation of a ’wet’ particle (the droplet), restricted drying at a falling rate due to the formation of a crust around a wet core, and inert heating of the dry porous particle. Each stage is mathematically detailed to replicate all phenomena occurring throughout the drying process. The focus, however, is on the falling rate drying regime which is described in terms of Stefan diffusion of water vapour through the pores of a thickening crust. To this end, the model needs the material properties. This permits the droplet characteristics to be determined by composition rather than through single-droplet drying experiments. Finally, the model is validated against five of such experiments from literature using skim milk. Good agreement is found at each comparative case for the particle mass and temperature throughout the various drying regimes providing that for good reasons in three cases a lower drying air temperature is applied than reported for the experiments. The model is capable of predicting the entire drying process at low computational cost and without requiring empirical input.</p
    corecore