1,351 research outputs found
Pesticides and metabolites in groundwater: examples from two major UK aquifers
Reducing the impact of anthropogenic pollution on groundwater bodies and ameliorating any deterioration of water quality is central to key legislative drivers such as the EU Water Framework Directive and the proposed daughter Directive relating to the protection of groundwater. Pesticide pollution has a direct impact on groundwater quality and an indirect impact on the associated aquatic ecosystems supported by groundwater. There is currently no legislative requirement to monitor pesticide metabolite concentrations in groundwater. Pesticide and metabolite results from two nationally important aquifers are presented, the Trassic Sandstone and the Chalk of Southern England.
Aerobic microbial degradation of diuron in the soil can
lead to the formation of three compounds; dichlorophenylmethyl urea (DCPMU), dichlorophenyl
urea (DCPU) and dichloroanaline (DCA).Median diuron concentrations were significantly higher
than each of the metabolites with outliers exceeding the
PVC on at least one occasion. At nine sites in Kent, Southern England, (60%) metabolites were more prevalent than diuron. Both aquifers are an important source of water, locally supplying up to 80% of public drinking water. The sandstone site has a predominantly arable landuse with a potential diffuse source of pesticides although soakaways are possible point sources.The chalk site has a mixture of arable and industrial/urban
landuse. A significant source has been from excessive
applications of diuron (“over-spray”) on a number of public
amenities. Data from both aquifers show that pesticide concentrations have a high degree of temporal variability. Elevated pesticide concentrations are associated with recharge events in both aquifer systems regardless of pesticide source terms. Pesticides from amenity use and diffuse agricultural sources both pose a threat to groundwater quality. Pesticide metabolites are present in significant concentrations in groundwaters. Systematic, long-term monitoring (5-10 years) is required to understand trends in groundwater quality
Increasing road network resilience to the impacts of ground movement due to climate change – a case study from Lincolnshire, United Kingdom
The UK road network is deteriorating due to ageing infrastructure, climate change and increasing traffic. Due to community and economic reliance on a functioning road system, there is an urgent requirement to build resilience. The roads of south Lincolnshire have high susceptibility to ground movement due to the underlying geology. Deposits such as peat, tidal flat deposits, and alluvium have a high susceptibility to compress, particularly when loaded, or through loss of water content driven by climate change or lowering of water in drainage channels. The shallow foundations of Lincolnshire's rural evolved roads, originating from old mud tracks, are poorly constructed, increasing their vulnerability to movement. Types of damage include longitudinal cracking, edge failure, and uneven long section profiles. Through knowledge exchange, data sharing and collaboration between the British Geological Survey and Lincolnshire County Council, a direct relationship between road condition and geohazard susceptibility has been demonstrated; showing compressible ground has a greater correlation with road damage than originally considered. This suggests improved understanding of the relationships between the geological, climatic, and anthropogenic driving forces on ground movement and road damage enables more informed repair prioritisation, decision support, and improved bespoke road repair practices, increasing future resilience of road networks
Low-temperature concentration of tellurium and gold in continental red bed successions
Acknowledgements This research was supported by NERC grants (NE/L001764/1, NE/M010953/1). We are grateful to J. Still and A. Sandison for technical support and to the gypsum mines and C. Brolley for access and sampling. Critical comments from Cristiana Ciobanu, Eric Gloaguen and Georges Calas are gratefully acknowledged. The authors have no conflicts of interest to declare.Peer reviewedPublisher PD
Comparative study of density functional theories of the exchange-correlation hole and energy in silicon
We present a detailed study of the exchange-correlation hole and
exchange-correlation energy per particle in the Si crystal as calculated by the
Variational Monte Carlo method and predicted by various density functional
models. Nonlocal density averaging methods prove to be successful in correcting
severe errors in the local density approximation (LDA) at low densities where
the density changes dramatically over the correlation length of the LDA hole,
but fail to provide systematic improvements at higher densities where the
effects of density inhomogeneity are more subtle. Exchange and correlation
considered separately show a sensitivity to the nonlocal semiconductor crystal
environment, particularly within the Si bond, which is not predicted by the
nonlocal approaches based on density averaging. The exchange hole is well
described by a bonding orbital picture, while the correlation hole has a
significant component due to the polarization of the nearby bonds, which
partially screens out the anisotropy in the exchange hole.Comment: 16 pages, 5 figures, RevTeX, added conten
Weak antiferromagnetism due to Dzyaloshinskii-Moriya interaction in BaCuOCl
The antiferromagnetic insulating cuprate BaCuOCl contains
folded CuO chains with four magnetic copper ions () per unit cell.
An underlying multiorbital Hubbard model is formulated and the superexchange
theory is developed to derive an effective spin Hamiltonian for this cuprate.
The resulting spin Hamiltonian involves a Dzyaloshinskii-Moriya term and a more
weak symmetric anisotropic exchange term besides the isotropic exchange
interaction. The corresponding Dzyaloshinskii-Moriya vectors of each magnetic
Cu-Cu bond in the chain reveal a well defined spatial order. Both, the
superexchange theory and the complementary group theoretical consideration,
lead to the same conclusion on the character of this order. The analysis of the
ground-state magnetic properties of the derived model leads to the prediction
of an additional noncollinear modulation of the antiferromagnetic structure.
This weak antiferromagnetism is restricted to one of the Cu sublattices.Comment: 13 pages, 1 table, 4 figure
Interface electronic states and boundary conditions for envelope functions
The envelope-function method with generalized boundary conditions is applied
to the description of localized and resonant interface states. A complete set
of phenomenological conditions which restrict the form of connection rules for
envelope functions is derived using the Hermiticity and symmetry requirements.
Empirical coefficients in the connection rules play role of material parameters
which characterize an internal structure of every particular heterointerface.
As an illustration we present the derivation of the most general connection
rules for the one-band effective mass and 4-band Kane models. The conditions
for the existence of Tamm-like localized interface states are established. It
is shown that a nontrivial form of the connection rules can also result in the
formation of resonant states. The most transparent manifestation of such states
is the resonant tunneling through a single-barrier heterostructure.Comment: RevTeX4, 11 pages, 5 eps figures, submitted to Phys.Rev.
Theory of Two-Dimensional Quantum Heisenberg Antiferromagnets with a Nearly Critical Ground State
We present the general theory of clean, two-dimensional, quantum Heisenberg
antiferromagnets which are close to the zero-temperature quantum transition
between ground states with and without long-range N\'{e}el order. For
N\'{e}el-ordered states, `nearly-critical' means that the ground state
spin-stiffness, , satisfies , where is the
nearest-neighbor exchange constant, while `nearly-critical' quantum-disordered
ground states have a energy-gap, , towards excitations with spin-1,
which satisfies . Under these circumstances, we show that the
wavevector/frequency-dependent uniform and staggered spin susceptibilities, and
the specific heat, are completely universal functions of just three
thermodynamic parameters. Explicit results for the universal scaling functions
are obtained by a expansion on the quantum non-linear sigma model,
and by Monte Carlo simulations. These calculations lead to a variety of
testable predictions for neutron scattering, NMR, and magnetization
measurements. Our results are in good agreement with a number of numerical
simulations and experiments on undoped and lightly-doped .Comment: 81 pages, REVTEX 3.0, smaller updated version, YCTP-xxx
- …