2,733 research outputs found
Beyond the project cycle: an evaluation of agroforestry adoption and diffusion over the medium term in a south Indian village
Few studies explicitly assess the temporal and spatial dynamics of agroforestry adoption occurring beyond the project cycle. Where ex-post evaluations are published, abandonment of introduced agroforestry after project cessation is often reported. This paper presents an analysis of agroforestry adoption in a poor, peri-urban village in semi-arid south India, where 97 % of initial adopters had retained their plots six to eight years after implementation. The intervention was facilitated by BAIF, an Indian non-governmental organisation specialising in natural resource management. The complex technological package promoted was known as �wadi� and comprised fruit trees planted in crop fields, with a boundary of multi-purpose trees and integrated soil and water conservation measures. Sixty four agroforestry plots belonging to 43 households were surveyed in 2010/11 and interviews were held with both adopting and non-adopting farmers. Beyond retention, a quarter of adopters had expanded the practice on to additional areas of land and some diffusion to initially non-adopting farmers had also occurred. Adopters were found to have modified the practice to suit their own objectives, capabilities and constraints, highlighting that adoption is more than a simple binary choice. The study demonstrates the importance of external support for adoption of agroforestry. The intervention was not, however, especially pro-poor with adoption occurring disproportionately among relatively wealthier households with larger landholdings. Where poorer households adopted, this tended to occur later. Participation was entirely voluntary and, by 2011, conversion of suitable farmland to agroforestry had reached 18 %; while beneficial to individual adopters, this patchy coverage arguably limits the potential for enhanced ecosystem service provision at landscape-scale
Survival, extinction and approximation of discrete-time branching random walks
We consider a general discrete-time branching random walk on a countable set
X. We relate local, strong local and global survival with suitable inequalities
involving the first-moment matrix M of the process. In particular we prove
that, while the local behavior is characterized by M, the global behavior
cannot be completely described in terms of properties involving M alone.
Moreover we show that locally surviving branching random walks can be
approximated by sequences of spatially confined and stochastically dominated
branching random walks which eventually survive locally if the (possibly
finite) state space is large enough. An analogous result can be achieved by
approximating a branching random walk by a sequence of multitype contact
processes and allowing a sufficiently large number of particles per site. We
compare these results with the ones obtained in the continuous-time case and we
give some examples and counterexamples.Comment: 32 pages, a few misprints have been correcte
Photon-photon correlations and entanglement in doped photonic crystals
We consider a photonic crystal (PC) doped with four-level atoms whose
intermediate transition is coupled near-resonantly with a photonic band-gap
edge. We show that two photons, each coupled to a different atomic transition
in such atoms, can manifest strong phase or amplitude correlations: One photon
can induce a large phase shift on the other photon or trigger its absorption
and thus operate as an ultrasensitive nonlinear photon-switch. These features
allow the creation of entangled two-photon states and have unique advantages
over previously considered media: (i) no control lasers are needed; (ii) the
system parameters can be chosen to cause full two-photon entanglement via
absorption; (iii) a number of PCs can be combined in a network.Comment: Modified, expanded text; added reference
Supernovae and Positron Annihilation
Radioactive nuclei, especially those created in SN explosion, have long been
suggested to be important contributors of galactic positrons. In this paper we
describe the findings of three independent OSSE/SMM/TGRS studies of positron
annihilation radiation, demonstrating that the three studies are largely in
agreement as to the distribution of galactic annihilation radiation. We then
assess the predicted yields and distributions of SN-synthesized radionuclei,
determining that they are marginally compatible with the findings of the
annihilation radiation studies.Comment: 7 pages, accepted for publication in New Astronomy Reviews (Astronomy
with Radioactivites III
Explicit asymptotic modelling of transient Love waves propagated along a thin coating
The official published version can be obtained from the link below.An explicit asymptotic model for transient Love waves is derived from the exact equations of anti-plane elasticity. The perturbation procedure relies upon the slow decay of low-frequency Love waves to approximate the displacement field in the substrate by a power series in the depth coordinate. When appropriate decay conditions are imposed on the series, one obtains a model equation governing the displacement at the interface between the coating and the substrate. Unusually, the model equation contains a term with a pseudo-differential operator. This result is confirmed and interpreted by analysing the exact solution obtained by integral transforms. The performance of the derived model is illustrated by numerical examples.This work is sponsored by the grant from Higher Education of Pakistan and by the Brunel University’s “BRIEF” research award
Advanced Compton Telescope Designs and SN Science
The Advanced Compton Telescope (ACT) has been suggested to be the optimal
next-generation instrument to study nuclear gamma-ray lines. In this work, we
investigate the potential of three hypothetical designs of the ACT to perform
SN science. We provide estimates of 1) the SN detection rate, 2) the SN Ia
discrimination rate, and 3) which gamma-ray lines would be detected from
specific supernova remnants. We find that the prompt emission from a SN Ia is
such that it is unlikely that one would be within the range that an
INTERMEDIATE ACT would be able to distinguish between explosion scenarios,
although such an instrument would detect a handful of SNRs.
We further find that the SUPERIOR ACT design would be a truly breakthrough
instrument for SN science. By supplying these estimates, we intend to assist
the gamma-ray astrophysics community in deciding the course of the next decade
of gamma-ray SN science.Comment: 10 pages, accepted for publication in New astronomy Reviews
(Astronomy with Radioactivities III
Recommended from our members
A combined PLC and CPU approach to multiprocessor control
A sophisticated multiprocessor control system has been developed for use in the E-Power Supply System Integrated Control (EPSSIC) on the DIII-D tokamak. EPSSIC provides control and interlocks for the ohmic heating coil power supply and its associated systems. Of particular interest is the architecture of this system: both a Programmable Logic Controller (PLC) and a Central Processor Unit (CPU) have been combined on a standard VME bus. The PLC and CPU input and output signals are routed through signal conditioning modules, which provide the necessary voltage and ground isolation. Additionally these modules adapt the signal levels to that of the VME I/O boards. One set of I/O signals is shared between the two processors. The resulting multiprocessor system provides a number of advantages: redundant operation for mission critical situations, flexible communications using conventional TCP/IP protocols, the simplicity of ladder logic programming for the majority of the control code, and an easily maintained and expandable non-proprietary system
Life-Changing Decisions: Exploring Proximal and Distal Motivations Behind Why American Parents Adopt Domestically or Internationally
The purpose of this qualitative study was to explore American parents proximal and distal motivations for choosing domestic and international adoption from the distinctive viewpoint of adoptive parents own words and perspectives using the lenses of culture and social exchange theory The findings from this study revealed three primary factors that were found to influence adoptive parents motivations to choose domestic or international adoption 1 unique cultural influences on domestic and international adoptive parents adoption motivations 2 shared similarities and discrepant differences between adoptive parents motivations who adopted domestically or internationally and 3 perceived intrinsic and extrinsic costs and rewards that influenced parents adoption motivations A conceptual decision-making model is introduced to illustrate the complicated calculus behind American parents motivations to choose either domestic or international adoption Suggestions for adoption regulation adoption process and recruitment efforts for both domestic and international adoptions are discusse
Single Photons on Pseudo-Demand from Stored Parametric Down-Conversion
We describe the results of a parametric down-conversion experiment in which
the detection of one photon of a pair causes the other photon to be switched
into a storage loop. The stored photon can then be switched out of the loop at
a later time chosen by the user, providing a single photon for potential use in
a variety of quantum information processing applications. Although the stored
single photon is only available at periodic time intervals, those times can be
chosen to match the cycle time of a quantum computer by using pulsed
down-conversion. The potential use of the storage loop as a photonic quantum
memory device is also discussed.Comment: 8 pages, 7 Figs., RevTe
Efficient weakly-radiative wireless energy transfer: An EIT-like approach
Inspired by a quantum interference phenomenon known in the atomic physics community as electromagnetically induced transparency (EIT), we propose an efficient weakly radiative wireless energy transfer scheme between two identical classical resonant objects, strongly coupled to an intermediate classical resonant object of substantially different properties, but with the same resonance frequency. The transfer mechanism essentially makes use of the adiabatic evolution of an instantaneous (so called “dark”) eigenstate of the coupled 3-object system. Our analysis is based on temporal coupled mode theory (CMT), and is general enough to be valid for various possible sorts of coupling, including the resonant inductive coupling on which witricity-type wireless energy transfer is based. We show that in certain parameter regimes of interest, this scheme can be more efficient, and/or less radiative than other, more conventional approaches. A concrete example of wireless energy transfer between capacitively-loaded metallic loops is illustrated at the beginning, as a motivation for the more general case. We also explore the performance of the currently proposed EIT-like scheme, in terms of improving efficiency and reducing radiation, as the relevant parameters of the system are varied.U.S. Department of EnergyDARPAArmy Research OfficeNational Science Foundatio
- …