54,334 research outputs found

    Laboratory simulations of solar prominence eruptions

    Get PDF
    Spheromak technology is exploited to create laboratory simulations of solar prominence eruptions. It is found that the initial simulated prominences are arched, but then bifurcate into twisted secondary structures which appear to follow fringing field lines. A simple model explains many of these topological features in terms of the trajectories of field lines associated with relaxed states, i.e., states satisfying [del] × B = lambda B. This model indicates that the field line concept is more fundamental than the flux tube concept because a field line can always be defined by specifying a starting point whereas attempting to define a flux tube by specifying a starting cross section typically works only if lambda is small. The model also shows that, at least for plasma evolving through a sequence of force-free states, the oft-used line-tying concept is in error. Contrary to the predictions of line-tying, direct integration of field line trajectories shows explicitly that when lambda is varied, both ends of field lines intersecting a flux-conserving plane do not remain anchored to fixed points in that plane. Finally, a simple explanation is provided for the S-shaped magnetic structures often seen on the sun; the S shape is shown to be an automatic consequence of field line arching and the parallelism between magnetic field and current density for force-free states

    Critical dynamics of an interacting magnetic nanoparticle system

    Full text link
    Effects of dipole-dipole interactions on the magnetic relaxation have been investigated for three Fe-C nanoparticle samples with volume concentrations of 0.06, 5 and 17 vol%. While both the 5 and 17 vol% samples exhibit collective behavior due to dipolar interactions, only the 17 vol% sample displays critical behavior close to its transition temperature. The behaviour of the 5 vol% sample can be attributed to a mixture of collective and single particle dynamics.Comment: 19 pages, 8 figure

    Point-Source Power in 3 Year Wilkinson Microwave Anisotropy Probe Data

    Get PDF
    Using a set of multifrequency cross spectra computed from the 3 year WMAP sky maps, we fit for the unresolved point-source contribution. For a white-noise power spectrum, we find a Q-band amplitude of A = 0.011 ± 0.001 ÎŒK^2 sr (antenna temperature), significantly smaller than the value of 0.017 ± 0.002 ÎŒK^2 sr used to correct the spectra in the WMAP release. Modifying the point-source correction in this way largely resolves the discrepancy that Eriksen et al. found between the WMAP V- and W-band power spectra. Correcting the co-added WMAP spectrum for both the low-l power excess due to a suboptimal likelihood approximation—also reported by Eriksen et al.—and the high-l power deficit due to oversubtracted point sources—presented in this Letter—we find that the net effect in terms of cosmological parameters is an ~0.7 σ shift in n_s to larger values. For the combination of WMAP, BOOMERANG, and ACBAR data, we find ns = 0.969 ± 0.016, lowering the significance of n_s ≠ 1 from ~2.7 σ to ~2.0 σ

    Co- and counter-helicity interaction between two adjacent laboratory prominences

    Get PDF
    The interaction between two side-by-side solar prominence-like plasmas has been studied using a four-electrode magnetized plasma source that can impose a wide variety of surface boundary conditions. When the source is arranged to create two prominences with the same helicity (co-helicity), it is observed that helicity transfer from one prominence to the other causes the receiving prominence to erupt sooner and faster than the transmitting prominence. When the source is arranged to create two prominences with opposite helicity (counter-helicity), it is observed that upon merging, prominences wrap around each other to form closely spaced, writhing turns of plasma. This is followed by appearance of a distinct bright region in the middle and order of magnitude higher emission of soft x rays. The four-electrode device has also been used to change the angle of the neutral line and so form more pronounced S-shapes

    Peripherality of breakup reactions

    Full text link
    The sensitivity of elastic breakup to the interior of the projectile wave function is analyzed. Breakup calculations of loosely bound nuclei (8B and 11Be) are performed with two different descriptions of the projectile. The descriptions differ strongly in the interior of the wave function, but exhibit identical asymptotic properties, namely the same asymptotic normalization coefficient, and phase shifts. Breakup calculations are performed at intermediate energies (40-70 MeV/nucleon) on lead and carbon targets as well as at low energy (26 MeV) on a nickel target. No dependence on the projectile description is observed. This result confirms that breakup reactions are peripheral in the sense that they probe only the external part of the wave function. These measurements are thus not directly sensitive to the total normalization of the wave function, i.e. spectroscopic factor.Comment: Reviewed version accepted for publication in Phys. Rev. C; 1 new section (Sec. III E), 2 new figures (Figs. 3 and 5

    The effect of the range of interaction on the phase diagram of a globular protein

    Full text link
    Thermodynamic perturbation theory is applied to the model of globular proteins studied by ten Wolde and Frenkel (Science 277, pg. 1976) using computer simulation. It is found that the reported phase diagrams are accurately reproduced. The calculations show how the phase diagram can be tuned as a function of the lengthscale of the potential.Comment: 20 pages, 5 figure

    Chain Reduction for Binary and Zero-Suppressed Decision Diagrams

    Full text link
    Chain reduction enables reduced ordered binary decision diagrams (BDDs) and zero-suppressed binary decision diagrams (ZDDs) to each take advantage of the others' ability to symbolically represent Boolean functions in compact form. For any Boolean function, its chain-reduced ZDD (CZDD) representation will be no larger than its ZDD representation, and at most twice the size of its BDD representation. The chain-reduced BDD (CBDD) of a function will be no larger than its BDD representation, and at most three times the size of its CZDD representation. Extensions to the standard algorithms for operating on BDDs and ZDDs enable them to operate on the chain-reduced versions. Experimental evaluations on representative benchmarks for encoding word lists, solving combinatorial problems, and operating on digital circuits indicate that chain reduction can provide significant benefits in terms of both memory and execution time

    The Jahn-Teller active fluoroperovskites ACrF3A\mathrm{CrF_3} A=Na+,K+A=\mathrm{Na^+},\mathrm{K^+}: thermo- and magneto optical correlations as function of the AA-site

    Get PDF
    Chromium (II) fluoroperovskites ACrF3(A=Na+,K+)A\mathrm{CrF_3}(A\mathrm{=Na^+,K^+}) are strongly correlated Jahn-Teller active materials at low temperatures. In this paper, we examine the role that the AA-site ion plays in this family of fluoroperovskites using both experimental methods (XRD, optical absorption spectroscopy and magnetic fields) and DFT simulations. Temperature-dependent optical absorption experiments show that the spin-allowed transitions E2E_2 and E3E_3 only merge completely for AA= Na at 2 K. Field-dependent optical absorption measurements at 2 K show that the oscillating strength of the spin-allowed transitions in NaCrF3\mathrm{NaCrF_3} increases with increasing applied field. Direct magneto-structural correlations which suppress the spin-flip transitions are observed for KCrF3{\rm KCrF_3} below its Ne\'el temperature. In NaCrF3{\rm NaCrF_3} the spin-flip transitions vanish abruptly below 9 K revealing magneto-optical correlations not linked to crystal structure changes. This suggests that as the long range ordering is reduced local JT effects in the individual CrF64−{\rm CrF_6^{4-}} octahedra take control of the observed behavior. Our results show clear deviation from the pattern found for the isoelectronic AxMnF3+xA_x{\rm MnF}_{3+x} system. The size of the AA-site cation is shown to be central in dictating the physical properties and phase transitions in ACrF3A{\rm CrF}_3, opening up the possibility of varying the composition to create novel states of matter with tuneable properties
    • 

    corecore