50 research outputs found

    Balancing for Protein and Amino Acids: It Isn't Quite as Simple as it Might Seem

    Full text link

    Review: How the efficiency of utilization of essential amino acids can be applied in dairy cow nutrition

    Full text link
    How the efficiency of utilization of essential amino acids (EffUEAA) can be applied in dairy cow nutrition is presented in this review. The concept of EffUEAA proposed by the National Academies of Sciences, Engineering and Medicine (NASEM, 2021) is first detailed. It represents the proportion of the metabolisable essential amino acids (mEAA) supply used to support protein secretions and accretions (scurf, metabolic fecal, milk and growth). For these processes, the efficiency of each individual EAA is variable, and considered to vary similarly for all the protein secretions and accretions. The anabolic process of gestation is ascribed to a constant efficiency (33%), whereas the efficiency of endogenous urinary loss (EndoUri) is set at 100%. Therefore, the NASEM model EffUEAA was calculated as the sum of EAA in the true protein of secretions and accretions divided by the available EAA (mEAA − EndoUri − gestation net true protein/0.33). In this paper, the reliability of this mathematical calculation was tested through an example where the experimental efficiency of His was calculated assuming that liver removal represents catabolism. The NASEM model and experimental efficiencies were in the same range and varied in similar manner. Assuming that the NASEM model EffUEAA reflects EAA metabolism in the dairy cow, its different applications were examined. In NASEM, target efficiencies were determined for each EAA: 75, 71, 73, 72, 73, 60, 64, 86 and 74% for His, Ile, Leu, Lys, Met, Phe, Thr, Trp, and Val, respectively. From these, recommendations for mEAA supply can be calculated as: [(secretions + accretions)/(target EffUEAA × 0.01) + EndoUri + gestation/0.33], assuming energy supply is adequate. In addition to NASEM propositions, equations to predict EffUEAA with precision and accuracy are detailed, using the ratio of (mEAA-EndoUri) to digestible energy intake, in a quadratic model that includes days in milk. Moreover, milk true protein yield predictions from predicted EffUEAA or efficiency of utilization of metabolisable protein are better than those from the multivariate equation of NASEM (2021) and superior to those predicted with a fixed efficiency. Finally, either the NASEM model or the predicted EffUEAA can be used to assess the responsiveness of a ration to supplementation with a single EAA. If the EffUEAA of the EAA to supplement is higher than the target EffUEAA, while the EffUEAA of the other EAA are lower than the target value, this suggests a potential improvement in milk true protein yield to supplementation with this EAA

    Valine and nonessential amino acids affect bidirectional transport rates of leucine and isoleucine in bovine mammary epithelial cells

    Full text link
    ABSTRACT: A more complete understanding of the mechanisms controlling AA transport in mammary glands of dairy cattle will help identify solutions to increase nitrogen feeding efficiency on farms. It was hypothesized that Ala, Gln, and Gly (NEAAG), which are actively transported into cells and exchanged for all branched-chain AA (BCAA), may stimulate transport of BCAA, and that Val may antagonize transport of the other BCAA due to transporter competition. Thus, we evaluated the effects of varying concentrations of NEAAG and Val on transport and metabolism of the BCAA Ala, Met, Phe, and Thr by bovine mammary epithelial cells. Primary cultures of bovine mammary epithelial cells were assigned to treatments of low (70% of mean in vivo plasma concentrations of lactating dairy cows) and high (200%) concentrations of Val and NEAAG (LVal and LNEAAG, HVal and HNEAAG, respectively) in a 2 × 2 factorial design. Cells were preloaded with treatment media containing [15N]-labeled AA for 24 h. The [15N]-labeled media were replaced with treatment media containing [13C]-labeled AA. Media and cells were harvested from plates at 0, 0.5, 1, 5, 15, 30, 60, and 240 min after application of the [13C]-labeled AA and assessed for [15N]- and [13C]-AA label concentrations. The data were used to derive transport, transamination, irreversible loss, and protein-synthesis fluxes. All Val fluxes, except synthesis of rapidly exchanging tissue protein, increased with the HVal treatment. Interestingly, the rapidly exchanging tissue protein, transamination, and irreversible-loss rate constants decreased with HVal, indicating that the significant flux increases were primarily driven by mass action with the cells resisting the flux increases by downregulating activity. However, the decreases could also reflect saturation of processes that would drive down the mass-action rate constants. This is supported by decreases in the same rate constants for Ile and Leu with HVal. This could be due to either competition for shared transamination and oxidation reactions or a reduction in enzymatic activity. Also, NEAAG did not affect Val fluxes, but influx and efflux rate constants increased for both Val and Leu with HNEAAG, indicating an activating substrate effect. Overall, AA transport rates generally responded concordantly with extracellular concentrations, indicating the transporters are not substrate-saturated within the in vivo range. However, BCAA transamination and oxidation enzymes may be approaching saturation within in vivo ranges. In addition, System L transport activity appeared to be stimulated by as much as 75% with high intracellular concentrations of Ala, Gln, and Gly. High concentrations of Val antagonized transport activity of Ile and Leu by 68% and 15%, respectively, indicating competitive inhibition, but this was only observable at HNEAAG concentrations. The exchange transporters of System L transport 8 of the essential AA that make up approximately 40% of milk protein, so better understanding this transporter is an important step for increased efficiency

    Relationships between gastrointestinal permeability, heat stress, and milk production in lactating dairy cows

    Full text link
    ABSTRACT: Heat stress (HS) is a global issue that decreases farm profits and compromises animal welfare. To distinguish between the direct and indirect effects of HS, 16 multiparous Holstein cows approximately 100 DIM were assigned to one of 2 treatments: pair fed to match HS cow intake, housed in thermoneutral conditions (PFTN, n = 8) or cyclical HS (n = 8). All cows were subjected to 2 experimental periods. Period 1 consisted of a 4 d thermoneutral period with ad libitum intake. During period 2 (P2), the HS cows were housed in cyclical HS conditions with a temperature-humidity index (THI) ranging from 76 to 80 and the PFTN cows were exposed to a constant THI of 64 for 4 d. Dry matter intake of the PFTN cows was intake matched to the HS cows. Milk yield, milk composition, rectal temperature, and respiration rate were recorded twice daily, blood was collected daily via a jugular catheter, and cows were fed twice daily. On d 3 of each period, Cr-EDTA and sucralose were orally administered and recovered via 24 h total urine collection to assess gastrointestinal permeability. All data were analyzed using the GLIMMIX procedure in SAS. The daily data collected in P1 was averaged and used as a covariate if deemed significant in the model. Heat stress decreased voluntary feed intake by 35% and increased rectal temperature and respiration rate (38.4°C vs. 39.4°C and 40 vs. 71 respirations/min, respectively). Heat stress reduced DMI by 35%, which accounted for 66% of the decrease in milk yield. The yields, and not concentrations, of milk protein, fat, and other solids were lower in the HS cows on d 4 of P2. Milk urea nitrogen was higher and plasma urea nitrogen tended to be higher on d 3 and d 4 of HS. Glucose was 7% lower in the HS cows and insulin was 71% higher in the HS cows than the PFTN cows on d 4 of P2. No difference in lipopolysaccharide-binding protein was observed. Heat stress cows produced 7 L/d more urine than PFTN cows. No differences were detected in the urine concentration or percentage of the oral dose recovered for Cr-EDTA or sucralose. In conclusion, HS was responsible for 34% of the reduction of milk yield. The elevated MUN and the tendency for elevated plasma urea nitrogen indicate a whole-body shift in nitrogen metabolism. No differences in gastrointestinal permeability or lipopolysaccharide-binding protein were observed. These results indicate that, under the conditions of this experiment, activation of the immune system by gut-derived lipopolysaccharide was not responsible for the decreased milk yield observed during HS
    corecore