9 research outputs found

    Site-specific basicities regulate molecular recognition in receptor binding: in silico docking of thyroid hormones.

    No full text
    Interactions between thyroid hormone alpha and beta receptors and the eight protonation microspecies of each of the main thyroid hormones (thyroxine, liothyronine, and reverse liothyronine) were investigated and quantitated by molecular modeling. Flexible docking of the various protonation forms of thyroid hormones and high-affinity thyromimetics to the two thyroid receptors was carried out. In this method the role of the ionization state of each basic site could be studied in the composite process of molecular recognition. Our results quantitate at the molecular level how the ionization state and the charge distribution influence the protein binding. The anionic form of the carboxyl group (i.e., carboxylate site) is essential for protein binding, whereas the protonated form of amino group worsens the binding. The protonation state of the phenolate plays a less important role in the receptor affinity; its protonation, however, alters the electron density and the concomitant stacking propensity of the aromatic rings, resulting in a different binding score. The combined results of docking and microspeciation studies show that microspecies with the highest concentration at the pH of blood are not the strongest binding ones. The calculated binding free energy values can be well interpreted in terms of the interactions between the actual sites of the microspecies and the receptor amino acids. Our docking results were validated and compared with biological data from the literature. Since the thyroid hormone receptors influence several physiologic functions, such as metabolic rate, cholesterol and triglyceride levels, and heart frequency, our binding results provide a molecular basis for drug design and development in related therapeutic indications

    Mutant glycosyltransferases assist in the development of a targeted drug delivery system and contrast agents for MRI

    No full text
    The availability of structural information on glycosyltransferases is beginning to make structure-based reengineering of these enzymes possible. Mutant glycosyltransferases have been generated that can transfer a sugar residue with a chemically reactive unique functional group to a sugar moiety of glycoproteins, glycolipids, and proteoglycans (glyco-conjugates). The presence of modified sugar moiety on a glycoprotein makes it possible to link bioactive molecules via modified glycan chains, thereby assisting in the assembly of bionanoparticles that are useful for developing the targeted drug delivery system and contrast agents for magnetic resonance imaging. The reengineered recombinant glycosyltransferases also make it possible to (1) remodel the oligosaccharide chains of glycoprotein drugs, and (2) synthesize oligosaccharides for vaccine development
    corecore