36 research outputs found

    The involvement of the vasa vasorum in the development of vasculitis in animal model of Kawasaki disease

    Get PDF
    BACKGROUND: Kawasaki Disease (KD) involves a diffuse and systemic vasculitis of unknown etiology that mainly affects infants and children. Although a considerable number of analyses of the clinical, histopathological and molecular biological details underlying the mechanism responsible for the development of coronary arterial lesions, it is still poorly understood. The purpose of this study was to analyze the state of angiogenesis, vasculogenesis and the distribution of blood vessels using an animal model of KD like vasculitis. We investigated the involvement of the vasa vasorum from the adventitia in the vascular involvement and the development of the disease state by performing sequential histopathology, scanning electron microscopy (SEM) and micro computed tomography (CT) studies using a murine model of vasculitis induced by the Candida albicans water-soluble fraction (CAWS). METHODS: To prepare the animal model of KD like vasculitis, CAWS was intraperitoneally injected into C57BL/6N mice for five consecutive days as reported by Ohno et al. We observed the changes of the vasa vasorum at the aorta and the orifices of the coronary arteries by SEM and micro CT, and also compared the neovascularization at the media and adventitia of the aorta by an immunohistochemical analysis. RESULTS: As previously reported, obvious inflammation was detected two weeks after the injection of CAWS, and also intimal thickening was observed three weeks after the injection. We found that the vasa vasorum in the adventitia of the aorta was increased in the model mice. The vasa vasorum started increasing one week after the injection of CAWS, before any obvious vasculitis was microscopically detected. CONCLUSION: The present results indicate that the vasculitis in Kawasaki disease starts as a disorder of the vasa vasorum

    The Role of Apelin on the Alleviative Effect of Angiotensin Receptor Blocker in Unilateral Ureteral Obstruction-Induced Renal Fibrosis

    Get PDF
    Background: Apelin is a selective endogenous ligand of the APJ receptor, which genetically has closest identity to the angiotensin II type 1 receptor (AT-1). The effects of the apelin/APJ system on renal fibrosis still remain unclear. Methods: We examined the effects of the apelin/APJ system on renal fibrosis during AT-1 blockade in a mouse unilateral ureteral obstruction (UUO) model. Results: We obtained the following results: (1) At UUO day 7, mRNA expressions of apelin/APJ and phosphorylations of Akt/endothelial nitric oxide synthase (eNOS) in the UUO kidney were increased compared to those in the nonobstructed kidney. (2) AT-1 blockade by the treatment with losartan resulted in a further increase of apelin mRNA as well as phosphorylations of Akt/eNOS proteins, and this was accompanied by alleviated renal interstitial fibrosis, decreased myofibroblast accumulation, and a decreased number of interstitial macrophages. (3) Blockade of the APJ receptor by the treatment with F13A during losartan administration completely abrogated the effects of losartan in the activation of the Akt/eNOS pathway and the amelioration of renal fibrosis. (4) Inhibition of NOS by the treatment with L-NAME also resulted in a further increase in renal fibrosis compared to the control group. Conclusion: These results suggest that increased nitric oxide production through the apelin/APJ/Akt/eNOS pathway may, at least in part, contribute to the alleviative effect of losartan in UUO-induced renal fibrosis

    ERK Regulates Renal Cell Proliferation and Renal Cyst Expansion in inv Mutant Mice

    Get PDF
    Nephronophthisis (NPHP) is the most frequent genetic cause of end-stage kidney disease in children and young adults. Inv mice are a model for human nephronophthisis type 2 (NPHP2) and characterized by multiple renal cysts and situs inversus. Renal epithelial cells in inv cystic kidneys show increased cell proliferation. We studied the ERK pathway to understand the mechanisms that induce cell proliferation and renal cyst progression in inv kidneys. We studied the effects of ERK suppression by administering PD184352, an oral mitogen-activated protein kinase kinase (MEK) inhibitor on renal cyst expansion, extracellular signal-regulated protein kinase (ERK) activity, bromo-deoxyuridine (BrdU) incorporation and expression of cell-cycle regulators in invΔC kidneys. Phosphorylated ERK (p-ERK) level increased along with renal cyst enlargement. Cell-cycle regulators showed a high level of expression in invΔC kidneys. PD184352 successfully decreased p-ERK level and inhibited renal cyst enlargement. The inhibitor also decreased expression of cell-cycle regulators and BrdU incorporation in renal epithelial cells. The present results showed that ERK regulated renal cell proliferation and cyst expansion in inv mutants

    Subtype of pulmonary artery sling with ventricular septal defect

    No full text

    The Application of a Modified d-ROMs Test for Measurement of Oxidative Stress and Oxidized High-Density Lipoprotein

    No full text
    Reactive oxygen species (ROS) are involved in the initiation and progression of atherosclerosis. ROS-derived hydroperoxides, as an indicator of ROS production, have been measured by using the diacron reactive oxygen metabolites (d-ROMs) test, which requires iron-containing transferrin in the reaction mixture. In this study we developed a modified d-ROMs test, termed the Fe-ROMs test, where iron ions were exogenously added to the reaction mixture. This modification is expected to exclude the assay variation that comes from different blood iron levels in individuals. In addition, this Fe-ROMs test was helpful for determining the class of plasma lipoproteins that are hydroperoxidized. Low-density lipoprotein/very low-density lipoprotein (LDL/VLDL) and high-density lipoprotein (HDL) were purified by use of an LDL/VLDL purification kit and the dextran sulfate-Mg2+ precipitation method, respectively; their hydroperoxide contents were assessed by performing the Fe-ROMs test. The majority of the hydroperoxides were detected only in the HDL fraction, not in the LDL/VLDL. Further detailed analysis of HDLs by size-exclusion high-performance liquid chromatography revealed that the hydroperoxide-containing molecules were small-sized HDLs. Because HDL was shown to be the principal vehicle for the plasma hydroperoxides, this Fe-ROMs test is a beneficial method for the assessment of oxidized-HDL levels. Indeed, Fe-ROMs levels were strongly associated with the levels of oxidized HDL, which were determined by performing the malondialdehyde-modified HDL enzyme immunoassay. In conclusion, the Fe-ROMs test using plasma itself or the HDL fraction after dextran sulfate-Mg2+ precipitation is useful to assess the functionality of HDL, because the oxidation of HDL impairs its antiatherogenic capacity
    corecore