36 research outputs found

    Use of virtual reality in preoperative education of cardiac surgery patients – A feasibility study

    Get PDF
    Objective: A Virtual Patient Tour (VPT) was developed to inform cardiac surgery patients about their hospitalization from the admission to their postoperative stay on the ward. The objective of our study was to assess the feasibility and acceptability of this VPT following the framework of the Virtual Reality Clinical Outcomes Research Experts Committee. Methods: In this single-centre cross-sectional study, adult patients admitted to the hospital for elective cardiac surgery were included. Acceptability, usability, and tolerability were measured by the validated questionnaires Unified Theory of Acceptance and Use of Technology (acceptability), System Usability Scale (usability), and Virtual Reality Sickness Questionnaire (tolerability). Descriptive statistics were used for the analysis. Results: Twenty-eight participants used the VPT. Results showed high acceptability (mean 16.7 ± 1.5), acceptable usability (mean 86.7 ± 9.3), and high tolerability (sickness score, median 7.1 % [0–17.1 %]). Conclusion: The use of the VPT is a feasible and promising technique. The next step is to optimize the content and technique of the VPT based on the suggestions of the participants. Practice implications: We recommend incorporating the VPT into preoperative patient education in addition to the routine information in cardiac surgery patients

    Inoculation problems of soybeans. Revised 1974

    No full text
    This archival publication may not reflect current scientific knowledge or recommendations. Current information available from the University of Minnesota Extension: https://www.extension.umn.edu

    Comparison of Acoustic Radiation Force Impulse Imaging Derived Carotid Plaque Stiffness with Spatially Registered MRI Determined Composition

    No full text
    Measurements of plaque stiffness may provide important prognostic and diagnostic information to help clinicians distinguish vulnerable plaques containing soft lipid pools from more stable, stiffer plaques. In this preliminary study, we compare in vivo ultrasonic Acoustic Radiation Force Impulse (ARFI) imaging derived measures of carotid plaque stiffness with composition determined by spatially registered Magnetic Resonance Imaging (MRI) in five human subjects with stenosis >50%. Ultrasound imaging was implemented on a commercial diagnostic scanner with custom pulse sequences to collect spatially registered 2D longitudinal B-mode and ARFI images. A standardized, multi-contrast weighted MRI sequence was used to obtain 3D Time of Flight (TOF), T1 weighted (T1W), T2 weighted (T2W), and Proton Density Weighted (PDW) transverse image stacks of volumetric data. The MRI data was segmented to identify lipid, calcium, and normal loose matrix components using commercially available software. 3D MRI segmented plaque models were rendered and spatially registered with 2D B-mode images to create fused ultrasound and MRI volumetric images for each subject. ARFI imaging displacements in regions of interest (ROIs) derived from MRI segmented contours of varying composition were compared. Regions of calcium and normal loose matrix components identified by MRI presented as homogeneously stiff regions of similarly low (typically ≈ 1µm) displacement in ARFI imaging. MRI identified lipid pools >2mm(2), found in three out of five subjects, presented as softer regions of increased displacement that were on average 1.8 times greater than the displacements in adjacent regions of loose matrix components in spatially registered ARFI images. This work provides early evidence supporting the use of ARFI imaging to noninvasively identify lipid regions in carotid artery plaques in vivo that are believed to increase the propensity of a plaque to rupture. Additionally, the results provide early training data for future studies and aid in the interpretation and possible clinical utility of ARFI imaging for identifying the elusive vulnerable plaque

    Aeroelastic Analysis of the Darrieus Wind Turbine

    No full text
    corecore