566 research outputs found
To What Extent Can Vegetation Mitigate Greenhouse Warming? A Modeling Approach
Climate models participating in the IPCC Fourth Assessment Report indicate that under a 2xCO2 environment, runoff would increase faster than precipitation overland. However, observations over large U.S watersheds indicate otherwise. This inconsistency suggests that there may be important feedbacks between climate and land surface unaccounted for in the present generation of models. We postulate that the increase in precipitation associated with the increase in CO2 is also increasing vegetation density, which may already be feeding back onto climate. Including this feedback in a climate model simulation resulted in precipitation and runoff trends consistent with observations and reduced the warming by 0.6OC overland. This unaccounted for missing water may be linked to about 10% of the missing land carbon sink. A recent compilation of outputs from 19 coupled atmosphere-ocean general circulation models used in the IPCC Fourth Assessment Report (AR4) shows projected increases in air temperature, precipitation and river discharge for 24 major rivers in the world in response to doubling CO2 by the end of the century (1). The ensemble mean from these models also indicates that, compared to their respective baselines overland, the global mean of the runoff change would increase faster (8.9% per year) than that of the precipitation (5% per year). We analyze century-scale observed annual runoff time-series (1901-2002) over 9 hydrological units covering large regions of the Eastern United States (Fig.1) compiled by the United States Geological Survey (USGS)(2). These regions were selected because they are the most forested; the least water-limited and are not under extensive irrigation. We compare these time-series to similar time-series of observed annual precipitation anomalies spanning the period 1900-1995 (3). Both time-series exhibit a positive longterm trend (Fig. 2); however, in contrast to the analysis of (I), these historic data records show that the rate of precipitation increase is 5.5 % per year, roughly double the rate of runoff increase of 3.1 % per year
Statistical distribution of quantum entanglement for a random bipartite state
We compute analytically the statistics of the Renyi and von Neumann entropies
(standard measures of entanglement), for a random pure state in a large
bipartite quantum system. The full probability distribution is computed by
first mapping the problem to a random matrix model and then using a Coulomb gas
method. We identify three different regimes in the entropy distribution, which
correspond to two phase transitions in the associated Coulomb gas. The two
critical points correspond to sudden changes in the shape of the Coulomb charge
density: the appearance of an integrable singularity at the origin for the
first critical point, and the detachement of the rightmost charge (largest
eigenvalue) from the sea of the other charges at the second critical point.
Analytical results are verified by Monte Carlo numerical simulations. A short
account of some of these results appeared recently in Phys. Rev. Lett. {\bf
104}, 110501 (2010).Comment: 7 figure
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in âs = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fbâ1 of protonâproton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC
Measurements of inclusive jet suppression in heavy ion collisions at the LHC
provide direct sensitivity to the physics of jet quenching. In a sample of
lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated
luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with
a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the
transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the
anti-kt algorithm with values for the distance parameter that determines the
nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of
the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp.
Jet production is found to be suppressed by approximately a factor of two in
the 10% most central collisions relative to peripheral collisions. Rcp varies
smoothly with centrality as characterized by the number of participating
nucleons. The observed suppression is only weakly dependent on jet radius and
transverse momentum. These results provide the first direct measurement of
inclusive jet suppression in heavy ion collisions and complement previous
measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables,
submitted to Physics Letters B. All figures including auxiliary figures are
available at
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
Consensusâbased technical recommendations for clinical translation of renal phase contrast MRI
Background
Phaseâcontrast (PC) MRI is a feasible and valid noninvasive technique to measure renal artery blood flow, showing potential to support diagnosis and monitoring of renal diseases. However, the variability in measured renal blood flow values across studies is large, most likely due to differences in PCâMRI acquisition and processing. Standardized acquisition and processing protocols are therefore needed to minimize this variability and maximize the potential of renal PCâMRI as a clinically useful tool.
Purpose
To build technical recommendations for the acquisition, processing, and analysis of renal 2D PCâMRI data in human subjects to promote standardization of renal blood flow measurements and facilitate the comparability of results across scanners and in multicenter clinical studies.
Study Type
Systematic consensus process using a modified Delphi method.
Population
Not applicable.
Sequence Field/Strength
Renal fast gradient echoâbased 2D PCâMRI.
Assessment
An international panel of 27 experts from Europe, the USA, Australia, and Japan with 6 (interquartile range 4â10) years of experience in 2D PCâMRI formulated consensus statements on renal 2D PCâMRI in two rounds of surveys. Starting from a recently published systematic review article, literatureâbased and dataâdriven statements regarding patient preparation, hardware, acquisition protocol, analysis steps, and data reporting were formulated.
Statistical Tests
Consensus was defined as â„75% unanimity in response, and a clear preference was defined as 60â74% agreement among the experts.
Results
Among 60 statements, 57 (95%) achieved consensus after the secondâround survey, while the remaining three showed a clear preference. Consensus statements resulted in specific recommendations for subject preparation, 2D renal PCâMRI data acquisition, processing, and reporting.
Data Conclusion
These recommendations might promote a widespread adoption of renal PCâMRI, and may help foster the setâup of multicenter studies aimed at defining reference values and building larger and more definitive evidence, and will facilitate clinical translation of PCâMRI.
Level of Evidence
1
Technical Efficacy Stage
Early carboniferous brachiopod faunas from the Baoshan block, west Yunnan, southwest China
38 brachiopod species in 27 genera and subgenera are described from the Yudong Formation in the Shidian-Baoshan area, west Yunnan, southwest China. New taxa include two new subgenera: Unispirifer (Septimispirifer) and Brachythyrina (Longathyrina), and seven new species: Eomarginifera yunnanensis, Marginatia cylindrica, Unispirifer (Unispirifer) xiangshanensis, Unispirifer (Septimispirifer) wafangjieensis, Brachythyrina (Brachythyrina) transversa, Brachythyrina (Longathyrina) baoshanensis, and Girtyella wafangjieensis. Based on the described material and constraints from associated coral and conodont faunas, the age of the brachiopod fauna from the Yudon Formation is considered late Tournaisian (Early Carboniferous), with a possibility extending into earlyViseacutean.<br /
Development of an amplicon-based sequencing approach in response to the global emergence of mpox
The 2022 multicountry mpox outbreak concurrent with the ongoing Coronavirus Disease 2019 (COVID-19) pandemic further highlighted the need for genomic surveillance and rapid pathogen whole-genome sequencing. While metagenomic sequencing approaches have been used to sequence many of the early mpox infections, these methods are resource intensive and require samples with high viral DNA concentrations. Given the atypical clinical presentation of cases associated with the outbreak and uncertainty regarding viral load across both the course of infection and anatomical body sites, there was an urgent need for a more sensitive and broadly applicable sequencing approach. Highly multiplexed amplicon-based sequencing (PrimalSeq) was initially developed for sequencing of Zika virus, and later adapted as the main sequencing approach for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Here, we used PrimalScheme to develop a primer scheme for human monkeypox virus that can be used with many sequencing and bioinformatics pipelines implemented in public health laboratories during the COVID-19 pandemic. We sequenced clinical specimens that tested presumptively positive for human monkeypox virus with amplicon-based and metagenomic sequencing approaches. We found notably higher genome coverage across the virus genome, with minimal amplicon drop-outs, in using the amplicon-based sequencing approach, particularly in higher PCR cycle threshold (Ct) (lower DNA titer) samples. Further testing demonstrated that Ct value correlated with the number of sequencing reads and influenced the percent genome coverage. To maximize genome coverage when resources are limited, we recommend selecting samples with a PCR Ct below 31 Ct and generating 1 million sequencing reads per sample. To support national and international public health genomic surveillance efforts, we sent out primer pool aliquots to 10 laboratories across the United States, United Kingdom, Brazil, and Portugal. These public health laboratories successfully implemented the human monkeypox virus primer scheme in various amplicon sequencing workflows and with different sample types across a range of Ct values. Thus, we show that amplicon-based sequencing can provide a rapidly deployable, cost-effective, and flexible approach to pathogen whole-genome sequencing in response to newly emerging pathogens. Importantly, through the implementation of our primer scheme into existing SARS-CoV-2 workflows and across a range of sample types and sequencing platforms, we further demonstrate the potential of this approach for rapid outbreak response.This publication was made possible by
CTSA Grant Number UL1 TR001863 from the
National Center for Advancing Translational
Science (NCATS), a component of the National
Institutes of Health (NIH) awarded to CBFV. INSA
was partially funded by the HERA project (Grant/
2021/PHF/23776) supported by the European
Commission through the European Centre for
Disease Control (to VB).info:eu-repo/semantics/publishedVersio
Consensus-based technical recommendations for clinical translation of renal phase contrast MRI
Background Phase-contrast (PC) MRI is a feasible and valid noninvasive technique to measure renal artery blood flow, showing potential to support diagnosis and monitoring of renal diseases. However, the variability in measured renal blood flow values across studies is large, most likely due to differences in PC-MRI acquisition and processing. Standardized acquisition and processing protocols are therefore needed to minimize this variability and maximize the potential of renal PC-MRI as a clinically useful tool.Purpose To build technical recommendations for the acquisition, processing, and analysis of renal 2D PC-MRI data in human subjects to promote standardization of renal blood flow measurements and facilitate the comparability of results across scanners and in multicenter clinical studies.Study Type Systematic consensus process using a modified Delphi method.Population Not applicable.Sequence Field/Strength Renal fast gradient echo-based 2D PC-MRI.Assessment An international panel of 27 experts from Europe, the USA, Australia, and Japan with 6 (interquartile range 4-10) years of experience in 2D PC-MRI formulated consensus statements on renal 2D PC-MRI in two rounds of surveys. Starting from a recently published systematic review article, literature-based and data-driven statements regarding patient preparation, hardware, acquisition protocol, analysis steps, and data reporting were formulated.Statistical Tests Consensus was defined as >= 75% unanimity in response, and a clear preference was defined as 60-74% agreement among the experts.Results Among 60 statements, 57 (95%) achieved consensus after the second-round survey, while the remaining three showed a clear preference. Consensus statements resulted in specific recommendations for subject preparation, 2D renal PC-MRI data acquisition, processing, and reporting.Data Conclusion These recommendations might promote a widespread adoption of renal PC-MRI, and may help foster the set-up of multicenter studies aimed at defining reference values and building larger and more definitive evidence, and will facilitate clinical translation of PC-MRI.Level of Evidence 1Technical Efficacy Stage 1Cardiovascular Aspects of Radiolog
- âŠ