23 research outputs found
SEQINEQ : Comment réduire la dépendance aux énergies fossiles des communautés inuit au Nunavik ?
International audienc
SEQINEQ’ : Développement de serres horticoles adaptées au climat circumpolaire
International audienc
On the way to developing northern greenhouses adapted to population and climate: Energy issues
International audienc
Optimizing performance for cooling electronic components using innovative heterogeneous materials
The relentless advancement of electronic devices has led to increased power densities, resulting in thermal
challenges that threaten device reliability. This study aims to address this issue through the development of
innovative heterogeneous materials for cooling electronic components. We focus on phase change materials
(PCMs) impregnated within architected porous structures fabricated using additive manufacturing technology
and 3D printing techniques. The objective is to leverage numerical simulations and additive manufacturing
technology to select suitable materials and optimize heat dissipation within these structures. A comprehensive
literature review of existing thermal management systems (TMS) for electronic devices, including mobile phones,
laptops, and data centres, is presented. This review establishes a foundation for understanding the significance of
TMS and introduces the benefits of employing PCMs in electronic devices. To assess the impact of the structure
materials, we have run numerical simulations involving stainless steel, silver, Inconel, aluminium, copper, ti-
tanium, and steel architected porous structures impregnated with palmitic acid as the PCM. The results
demonstrate the superior heat dissipation of silver, copper, and aluminium porous structures, attributed to their
higher thermal diffusivities. Other simulations explore PCMs with higher melting temperatures and latent heat
capacities, considering specific application parameters like mobile phones and laptops. By integrating three
organic PCMs (Myristic acid, Palmitic acid, and Stearic acid) within architected matrices, it offers a promising
solution in the choice of PCMs to the challenges posed by high power densities in electronics. This approach
deepens our understanding of the melting process and allows the optimization of heat transfer within architected
structure
Candida nivariensis: Identification strategy in mycological laboratories
International audienc