52 research outputs found

    Patterned Neuroprotection in the Inpp4awbl Mutant Mouse Cerebellum Correlates with the Expression of Eaat4

    Get PDF
    The weeble mutant mouse has a frame shift mutation in inositol polyphosphate 4-phosphatase type I (Inpp4a). The phenotype is characterized by an early onset cerebellar ataxia and neurodegeneration, especially apparent in the Purkinje cells. Purkinje cell loss is a common pathological finding in many human and mouse ataxic disorders. Here we show that in the Inpp4awbl mutant, Purkinje cells are lost in a specific temporal and spatial pattern. Loss occurs early in postnatal development; however, prior to the appearance of climbing fibers in the developing molecular layer, the mutant has a normal complement of Purkinje cells and they are properly positioned. Degeneration and reactive gliosis are present at postnatal day 5 and progress rapidly in a defined pattern of patches; however, Inpp4a is expressed uniformly across Purkinje cells. In late stage mutants, patches of surviving Purkinje cells appear remarkably normal with the exception that the climbing fibers have been excessively eliminated. Surviving Purkinje cells express Eaat4, a glutamate transporter that is differentially expressed in subsets of Purkinje cells during development and into adult stages. Prior to Purkinje cell loss, reactive gliosis and dendritic atrophy can be seen in Eaat4 negative stripes. Our data suggest that Purkinje cell loss in the Inpp4awbl mutant is due to glutamate excitotoxicity initiated by the climbing fiber, and that Eaat4 may exert a protective effect

    The nuclear hormone receptor gene Nr2c1 (Tr2) is a critical regulator of early retina cell patterning.

    Get PDF
    Nuclear hormone receptors play a major role in the development of many tissues. This study uncovers a novel role for testicular receptor 2 (Tr2, Nr2c1) in defining the early phase of retinal development and regulating normal retinal cell patterning and topography. The mammalian retina undergoes an overlapping yet biphasic period of development to generate all seven retinal cell types. We discovered that Nr2c1 expression coincides with development of the early retinal cells. Loss of Nr2c1 causes a severe vision deficit and impacts early, but not late retina cell types. Retinal cone cell topography is disrupted with an increase in displaced amacrine cells. Additionally, genetic background significantly impacts phenotypic outcome of cone photoreceptor cells but not amacrine cells. Chromatin-IP experiments reveal NR2C1 regulates early cell transcription factors that regulate retinal progenitor cells during development, including amacrine (Satb2) and cone photoreceptor regulators thyroid and retinoic acid receptors. This study supports a role for Nr2c1 in defining the biphasic period of retinal development and specifically influencing the early phase of retinal cell fate

    Nuclear Receptor Rev-erb Alpha (Nr1d1) Functions in Concert with Nr2e3 to Regulate Transcriptional Networks in the Retina

    Get PDF
    The majority of diseases in the retina are caused by genetic mutations affecting the development and function of photoreceptor cells. The transcriptional networks directing these processes are regulated by genes such as nuclear hormone receptors. The nuclear hormone receptor gene Rev-erb alpha/Nr1d1 has been widely studied for its role in the circadian cycle and cell metabolism, however its role in the retina is unknown. In order to understand the role of Rev-erb alpha/Nr1d1 in the retina, we evaluated the effects of loss of Nr1d1 to the developing retina and its co-regulation with the photoreceptor-specific nuclear receptor gene Nr2e3 in the developing and mature retina. Knock-down of Nr1d1 expression in the developing retina results in pan-retinal spotting and reduced retinal function by electroretinogram. Our studies show that NR1D1 protein is co-expressed with NR2E3 in the outer neuroblastic layer of the developing mouse retina. In the adult retina, NR1D1 is expressed in the ganglion cell layer and is co-expressed with NR2E3 in the outer nuclear layer, within rods and cones. Several genes co-targeted by NR2E3 and NR1D1 were identified that include: Nr2c1, Recoverin, Rgr, Rarres2, Pde8a, and Nupr1. We examined the cyclic expression of Nr1d1 and Nr2e3 over a twenty-four hour period and observed that both nuclear receptors cycle in a similar manner. Taken together, these studies reveal a novel role for Nr1d1, in conjunction with its cofactor Nr2e3, in regulating transcriptional networks critical for photoreceptor development and function

    Rapid Assessment of Avoidable Blindness in India

    Get PDF
    BACKGROUND: Rapid assessment of avoidable blindness provides valid estimates in a short period of time to assess the magnitude and causes of avoidable blindness. The study determined magnitude and causes of avoidable blindness in India in 2007 among the 50+ population. METHODS AND FINDINGS: Sixteen randomly selected districts where blindness surveys were undertaken 7 to 10 years earlier were identified for a follow up survey. Stratified cluster sampling was used and 25 clusters (20 rural and 5 urban) were randomly picked in each district.. After a random start, 100 individuals aged 50+ were enumerated and examined sequentially in each cluster. All those with presenting vision = 50 years were enumerated, and 94.7% examined. Based on presenting vision,, 4.4% (95% Confidence Interval[CI]: 4.1,4.8) were severely visually impaired (vision<6/60 to 3/60 in the better eye) and 3.6% (95% CI: 3.3,3.9) were blind (vision<3/60 in the better eye). Prevalence of low vision (<6/18 to 6/60 in the better eye) was 16.8% (95% CI: 16.0,17.5). Prevalence of blindness and severe visual impairment (<6/60 in the better eye) was higher among rural residents (8.2%; 95% CI: 7.9,8.6) compared to urban (7.1%; 95% CI: 5.0, 9.2), among females (9.2%; 95% CI: 8.6,9.8) compared to males (6.5%; 95% CI: 6.0,7.1) and people above 70 years (20.6%; 95% CI: 19.1,22.0) compared to people aged 50-54 years (1.3%; 95% CI: 1.1,1.6). Of all blindness, 88.2% was avoidable. of which 81.9% was due to cataract and 7.1% to uncorrected refractive errors/uncorrected aphakia. CONCLUSIONS: Cataract and refractive errors are major causes of blindness and low vision and control strategies should prioritize them. Most blindness and low vision burden is avoidable

    Genetic Variations Strongly Influence Phenotypic Outcome in the Mouse Retina

    Get PDF
    Variation in genetic background can significantly influence the phenotypic outcome of both disease and non-disease associated traits. Additionally, differences in temporal and strain specific gene expression can also contribute to phenotypes in the mammalian retina. This is the first report of microarray based cross-strain analysis of gene expression in the retina investigating genetic background effects. Microarray analyses were performed on retinas from the following mouse strains: C57BL6/J, AKR/J, CAST/EiJ, and NOD.NON-H2-nb1 at embryonic day 18.5 (E18.5) and postnatal day 30.5 (P30.5). Over 3000 differentially expressed genes were identified between strains and developmental stages. Differential gene expression was confirmed by qRT-PCR, Western blot, and immunohistochemistry. Three major gene networks were identified that function to regulate retinal or photoreceptor development, visual perception, cellular transport, and signal transduction. Many of the genes in these networks are implicated in retinal diseases such as bradyopsia, night-blindness, and cone-rod dystrophy. Our analysis revealed strain specific variations in cone photoreceptor cell patterning and retinal function. This study highlights the substantial impact of genetic background on both development and function of the retina and the level of gene expression differences tolerated for normal retinal function. These strain specific genetic variations may also be present in other tissues. In addition, this study will provide valuable insight for the development of more accurate models for human retinal diseases

    Role of Nuclear Receptors in Central Nervous System Development and Associated Diseases

    Full text link
    The nuclear hormone receptor (NHR) superfamily is composed of a wide range of receptors involved in a myriad of important biological processes, including development, growth, metabolism, and maintenance. Regulation of such wide variety of functions requires a complex system of gene regulation that includes interaction with transcription factors, chromatin-modifying complex, and the proper recognition of ligands. NHRs are able to coordinate the expression of genes in numerous pathways simultaneously. This review focuses on the role of nuclear receptors in the central nervous system and, in particular, their role in regulating the proper development and function of the brain and the eye. In addition, the review highlights the impact of mutations in NHRs on a spectrum of human diseases from autism to retinal degeneration

    Seeing the Future: A Review of Ocular Therapy

    Full text link
    Ocular diseases present a unique challenge and opportunity for therapeutic development. The eye has distinct advantages as a therapy target given its accessibility, compartmentalization, immune privilege, and size. Various methodologies for therapeutic delivery in ocular diseases are under investigation that impact long-term efficacy, toxicity, invasiveness, and delivery range. While gene, cell, and antibody therapy and nanoparticle delivery directly treat regions that have been damaged by disease, they can be limited in the duration of the therapeutic delivery and have a focal effect. In contrast, contact lenses and ocular implants can more effectively achieve sustained and widespread delivery of therapies; however, they can increase dilution of therapeutics, which may result in reduced effectiveness. Current therapies either offer a sustained release or a broad therapeutic effect, and future directions should aim toward achieving both. This review discusses current ocular therapy delivery systems and their applications, mechanisms for delivering therapeutic products to ocular tissues, advantages and challenges associated with each delivery system, current approved therapies, and clinical trials. Future directions for the improvement in existing ocular therapies include combination therapies, such as combined cell and gene therapies, as well as AI-driven devices, such as cortical implants that directly transmit visual information to the cortex

    Interspecies Correlations between Human and Mouse NR2E3-Associated Recessive Disease

    Full text link
    NR2E3-associated recessive disease in humans is historically defined by congenital night blinding retinopathy, characterized by an initial increase in short-wavelength (S)-cone sensitivity and progressive loss of rod and cone function. The retinal degeneration 7 (rd7) murine model, harboring a recessive mutation in the mouse ortholog of NR2E3, has been a well-studied disease model and recently evaluated as a therapeutic model for NR2E3-associated retinal degenerations. This study aims to draw parallels between human and mouse NR2E3-related disease through examination of spectral domain optical coherence tomography (SD-OCT) imaging between different stage of human disease and its murine counterpart. We propose that SD-OCT is a useful non-invasive diagnostic tool to compare human clinical dystrophy presentation with that of the rd7 mouse and make inference that may be of therapeutically relevance. Additionally, a longitudinal assessment of rd7 disease progression, utilizing available clinical data from our patients as well as extensive retrospective analysis of visual acuity data from published cases of human NR2E3-related disease, was curated to identify further valuable correlates between human and mouse Nr2e3 disease. Results of this study validate the slow progression of NR2E3-associated disease in humans and the rd7 mice and identify SD-OCT characteristics in patients at or near the vascular arcades that correlate well with the whorls and rosettes that are seen also in the rd7 mouse and point to imaging features that appear to be associated with better preserved S-cone mediated retinal function. The correlation of histological findings between rd7 mice and human imaging provides a solid foundation for diagnostic use of pathophysiological and prognostic information to further define characteristics and a relevant timeline for therapeutic intervention in the field of NR2E3-associated retinopathies
    corecore