24 research outputs found

    Isolation and Phase-Space Energization Analysis of the Instabilities in Collisionless Shocks

    Full text link
    We analyze the generation of kinetic instabilities and their effect on the energization of ions in non-relativistic, oblique collisionless shocks using a 3D-3V simulation by dHybridR\texttt{dHybridR}, a hybrid particle-in-cell code. At sufficiently high Mach number, quasi-perpendicular and oblique shocks can experience rippling of the shock surface caused by kinetic instabilities arising from free energy in the ion velocity distribution due to the combination of the incoming ion beam and the population of ions reflected at the shock front. To understand the role of the ripple on particle energization, we devise the new instability isolation method to identify the unstable modes underlying the ripple and interpret the results in terms of the governing kinetic instability. We generate velocity-space signatures using the field-particle correlation technique to look at energy transfer in phase space from the isolated instability driving the shock ripple, providing a viewpoint on the different dynamics of distinct populations of ions in phase space. We generate velocity-space signatures of the energy transfer in phase space of the isolated instability driving the shock ripple using the field-particle correlation technique. Together, the field-particle correlation technique and our new instability isolation method provide a unique viewpoint on the different dynamics of distinct populations of ions in phase space and allow us to completely characterize the energetics of the collisionless shock under investigation.Comment: 32 pages, 14 figures, accepted by the Journal of Plasma Physic

    The Importance of Heat Flux in Quasi-Parallel Collisionless Shocks

    Full text link
    Collisionless plasma shocks are a common feature of many space and astrophysical systems and are sources of high-energy particles and non-thermal emission, channeling as much as 20\% of the shock's energy into non-thermal particles. The generation and acceleration of these non-thermal particles have been extensively studied, however, how these particles feed back on the shock hydrodynamics has not been fully treated. This work presents the results of self-consistent hybrid particle-in-cell simulations that show the effect of self-generated non-thermal particle populations on the nature of collisionless, quasi-parallel shocks. They contribute to a significant heat flux density upstream of the shock. Non-thermal particles downstream of the shock leak into the upstream region, taking energy away from the shock. This increases the compression ratio, slows the shock down, and flattens the non-thermal population's spectral index for lower Mach number shocks. We incorporate this into a revised theory for the Rankine-Hugoniot jump conditions that include this effect and it shows excellent agreement with simulations. The results have the potential to explain discrepancies between predictions and observations in a wide range of systems, such as inaccuracies of predictions of arrival times of coronal mass ejections and the conflicting radio and x-ray observations of intracluster shocks. These effects will likely need to be included in fluid modeling to accurately predict shock evolution.Comment: 7 pages, 3 figures, a lot of appendi
    corecore