156 research outputs found
A Long Baseline Neutrino Oscillation Experiment Using J-PARC Neutrino Beam and Hyper-Kamiokande
Document submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresDocument submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresDocument submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresHyper-Kamiokande will be a next generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of Hyper-Kamiokande is the study of asymmetry in the lepton sector using accelerator neutrino and anti-neutrino beams. In this document, the physics potential of a long baseline neutrino experiment using the Hyper-Kamiokande detector and a neutrino beam from the J-PARC proton synchrotron is presented. The analysis has been updated from the previous Letter of Intent [K. Abe et al., arXiv:1109.3262 [hep-ex]], based on the experience gained from the ongoing T2K experiment. With a total exposure of 7.5 MW 10 sec integrated proton beam power (corresponding to protons on target with a 30 GeV proton beam) to a -degree off-axis neutrino beam produced by the J-PARC proton synchrotron, it is expected that the phase can be determined to better than 19 degrees for all possible values of , and violation can be established with a statistical significance of more than () for () of the parameter space
Abnormal motor activity during anaesthesia in a dog: a case report
Seizures or convulsions that occur during anaesthesia in veterinary patients are infrequently reported in the literature. Consequently, the incidence of such events is unknown. Several drugs commonly used in clinical veterinary anaesthesia have been shown to induce epileptiform activity in both human clinical patients and experimental candidates. The present case report describes convulsions in a four-year old male Bernese mountain dog during maintenance of anaesthesia with isoflurane after premedication with acepromazine and methadone followed by co-induction with propofol and ketamine. The dog had no history of previous convulsions. The use of several sedative and anaesthetic drugs makes it difficult to find one single causative pharmaceutical
Establishment of Functioning Human Corneal Endothelial Cell Line with High Growth Potential
Hexagonal-shaped human corneal endothelial cells (HCEC) form a monolayer by adhering tightly through their intercellular adhesion molecules. Located at the posterior corneal surface, they maintain corneal translucency by dehydrating the corneal stroma, mainly through the Na+- and K+-dependent ATPase (Na+/K+-ATPase). Because HCEC proliferative activity is low in vivo, once HCEC are damaged and their numbers decrease, the cornea begins to show opacity due to overhydration, resulting in loss of vision. HCEC cell cycle arrest occurs at the G1 phase and is partly regulated by cyclin-dependent kinase inhibitors (CKIs) in the Rb pathway (p16-CDK4/CyclinD1-pRb). In this study, we tried to activate proliferation of HCEC by inhibiting CKIs. Retroviral transduction was used to generate two new HCEC lines: transduced human corneal endothelial cell by human papillomavirus type E6/E7 (THCEC (E6/E7)) and transduced human corneal endothelial cell by Cdk4R24C/CyclinD1 (THCEH (Cyclin)). Reverse transcriptase polymerase chain reaction analysis of gene expression revealed little difference between THCEC (E6/E7), THCEH (Cyclin) and non-transduced HCEC, but cell cycle-related genes were up-regulated in THCEC (E6/E7) and THCEH (Cyclin). THCEH (Cyclin) expressed intercellular molecules including ZO-1 and N-cadherin and showed similar Na+/K+-ATPase pump function to HCEC, which was not demonstrated in THCEC (E6/E7). This study shows that HCEC cell cycle activation can be achieved by inhibiting CKIs even while maintaining critical pump function and morphology
Usability, acceptability, and feasibility of two technology-based devices for mental health screening in perinatal care: A comparison of web versus app
The use of Information and Communication Technologies (web pages and apps) in mental health has boosted. However, it is unknown which of these two devices can be better in terms of feasibility and acceptability. Our aim is to compare the feasibility, usability, and user satisfaction of two devices (web vs mobile application) of an online program for perinatal depression screening called HappyMom. In total, 348 and 175 perinatal women registered into HappyMom web and app version, respectively. The assessment protocol included different biopsychosocial evaluations (twice during pregnancy and thrice in the postpartum) and a satisfaction questionnaire. Results showed that a higher percentage of women in the web sample (27.3β51.1%) responded to each assessment compared to the app sample (9.1β53.1%). A smaller proportion of women in web sample never responded to any assessments. By contrast, the percentage of women who responded to all assessments was higher in app sample (longitudinal retention sample was 4.6% of web users and 9.1% of app users). In general, high satisfaction was found in both web and app users. Our result showed that online assessment methods are feasible and acceptable by perinatal women. However, dropout rates are a real problem that urge a solution that will be discussed further in the paper. Web and App devices present different advantages and limitations. The choice of one of them must be made taking into account the studyβs objective, the sample characteristics, and the dissemination possibilities
Preventing and Treating Womenβs Postpartum Depression: A Qualitative Systematic Review on Partner-Inclusive Interventions
Partner-related factors associated with the occurrence of Postpartum Depression (PPD) may justify the partnerβs inclusion in preventive and treatment approaches. The aim of this qualitative systematic review was to synthesize the literature on partner-inclusive interventions designed to prevent or treat postpartum depression (PPD) in women. In accordance with the PRISMA guidelines, the systematic search of studies published between 1967 and May 2015 in PsycINFO and PubMed identified 26 studies that met the inclusion criteria, which reported on 24 interventions. The following partner parameters were analyzed: participation type, session content, mental health assessment, attendance assessment, and the effects of partnerβs participation on the womenβs response to the interventions. Total participation by the partner was mostly reported in the prevention studies, whereas partial participation was reported in the treatment studies. The session content was mostly based on psychoeducation about PPD and parenthood, coping strategies to facilitate the transition to parenthood such as the partnerβs emotional and instrumental support, and problem-solving and communication skills. Some benefits perceived by the couples underscore the relevance of the partnerβs inclusion in PPD interventions. However, the scarce information about the partnerβs attendance and the associated effects on the womenβs intervention outcomes, along with methodological limitations of the studies, made it difficult to determine if the partnerβs participation was associated with the interventionβs efficacy. Conclusions about the clinical value of including partners in PPD interventions are still limited. More research is warranted to better inform health policy strategies
A Potential Role for Shed Soluble Major Histocompatibility Class I Molecules as Modulators of Neurite Outgrowth
The neurobiological activities of classical major histocompatibility class I (MHCI) molecules are just beginning to be explored. To further examine MHCI's actions during the formation of neuronal connections, we cultured embryonic mouse retina explants a short distance from wildtype thalamic explants, or thalami from transgenic mice (termed βNSE-Dbβ) whose neurons express higher levels of MHCI. While retina neurites extended to form connections with wildtype thalami, we were surprised to find that retina neurite outgrowth was very stunted in regions proximal to NSE-Db thalamic explants, suggesting that a diffusible factor from these thalami inhibited retina neurite outgrowth. It has been long known that MHCI-expressing cells release soluble forms of MHCI (sMHCI) due to the shedding of intact MHCI molecules, as well as the alternative exon splicing of its heavy chain or the action proteases which cleave off it's transmembrane anchor. We show that the diffusible inhibitory factor from the NSE-Db thalami is sMHCI. We also show that COS cells programmed to express murine MHCI release sMHCI that inhibits neurite outgrowth from nearby neurons in vitro. The neuroinhibitory effect of sMHCI could be blocked by lowering cAMP levels, suggesting that the neuronal MHCI receptor's signaling mechanism involves a cyclic nucleotide-dependent pathway. Our results suggest that MHCI may not only have neurobiological activity in its membrane-bound form, it may also influence local neurons as a soluble molecule. We discuss the involvement of complement proteins in generating sMHCI and new theoretical models of MHCI's biological activities in the nervous system
Engineering of cyclodextrin glucanotransferases and the impact for biotechnological applications
Cyclodextrin glucanotransferases (CGTases) are industrially important enzymes that produce cyclic Ξ±-(1,4)-linked oligosaccharides (cyclodextrins) from starch. Cyclodextrin glucanotransferases are also applied as catalysts in the synthesis of glycosylated molecules and can act as antistaling agents in the baking industry. To improve the performance of CGTases in these various applications, protein engineers are screening for CGTase variants with higher product yields, improved CD size specificity, etc. In this review, we focus on the strategies employed in obtaining CGTases with new or enhanced enzymatic capabilities by searching for new enzymes and improving existing enzymatic activities via protein engineering
- β¦