399 research outputs found

    Stochastic modelling and updating of a joint contact interface

    Get PDF
    Dynamic properties of the contact interfaces in joints and mechanical connections have a great influence on the overall dynamic properties of assembled structures. Uncertainty and nonlinearity are two major effects of contact interfaces which introduce challenges in accurate modeling. Randomness in surface roughness quality, surface finish and contact preload are the main sources of variability in the contact interfaces. On the other side, slip and slap are two mechanisms responsible for nonlinear behavior of joints. Stochastic linear/nonlinear models need to be developed for such uncertain structures to be used in dynamic response analysis or system parameter identification. In this paper, variability in linear behavior of an assembled structure containing a bolted lap-joint is investigated by using experimental results. A stochastic model is then constructed for the structure by employing a stochastic generic joint model and the uncertainty in the joint model parameters is identified by using a Bayesian identification approach

    Nonlinear MEMS Piezoelectric Harvesters in the presence of geometric and structural variabilities

    Get PDF
    This paper investigates the use of an electrostatic device to improve the performance of MEMS piezoelectric harvesters in the presence of geometric and structural variabilities due to the manufacturing process. Different types of uncertain parameters including material and geometric uncertainties have been considered. The variability of these parameters are estimated based on available existing experimental data in the literature. Monte Carlo simulation (MCS) is used for uncertainty propagation and it is shown that the resonance frequencies of the majority of the samples are far away from the excitation frequency and consequently this results in less harvested power. This paper identifies these samples and uses electrostatic devices to improve the performance of the harvester. The proposed device is composed of an unsymmetric arrangement of two electrodes to decrease the resonance frequency of samples through a softening nonlinearity. The unsymmetric arrangement of two electrodes is inevitable and due to geometric variability of the harvester. There are also two arch shape electrodes which can be used to create a hardening effect to increase the resonance frequency of samples which have resonance frequencies smaller than the nominal value

    An equivalent model of a nonlinear bolted flange joint

    Get PDF
    The dynamic response of individual components in an assembled structure shows high accuracy compared to experimental measurements of the system response. However, when it comes to assemblies, the conventional linear approaches fail to deliver good accuracy, due to the uncertain linear and nonlinear mechanisms in the contact interface of the joints. Therefore, the inherent dynamics of the contact interfaces needs to be considered in modeling assembled structures. In this paper the prediction of the nonlinear dynamic response in a bolted flange joint was obtained in two ways. First, a 3D detailed finite element model capable of representing the micro-slip mechanism was made using a quasi-static time stepping analysis. The linear characteristics and nonlinear mechanisms developing in the contact interface of a bolted joint are investigated by using the 3D detailed model. Moreover, the natural frequencies of the assembled structure (representing the linear response) and the micro-slip behavior in terms of hysteresis loops (representing the nonlinear response) are obtained using the detailed model. Second, an equivalent model composed of beam elements and an appropriate joint model is then constructed for the assembled structure. An identification approach is proposed, and the parameters of the joint model are identified using both linear and nonlinear characteristics, i.e. natural frequencies and hysteresis loops. Comparing the hysteresis loops obtained from the detailed and equivalent models verifies the accuracy of the joint model used to represent the contact interface and the identification approach proposed for parameter quantification

    Measurement of the cross section of high transverse momentum Z→bb̄ production in proton–proton collisions at √s = 8 TeV with the ATLAS detector

    Get PDF
    This Letter reports the observation of a high transverse momentum Z→bb̄ signal in proton–proton collisions at √s=8 TeV and the measurement of its production cross section. The data analysed were collected in 2012 with the ATLAS detector at the LHC and correspond to an integrated luminosity of 19.5 fb−¹. The Z→bb̄ decay is reconstructed from a pair of b -tagged jets, clustered with the anti-ktkt jet algorithm with R=0.4R=0.4, that have low angular separation and form a dijet with pT>200 GeVpT>200 GeV. The signal yield is extracted from a fit to the dijet invariant mass distribution, with the dominant, multi-jet background mass shape estimated by employing a fully data-driven technique that reduces the dependence of the analysis on simulation. The fiducial cross section is determined to be σZ→bb¯fid=2.02±0.20 (stat.) ±0.25 (syst.)±0.06 (lumi.) pb=2.02±0.33 pb, in good agreement with next-to-leading-order theoretical predictions

    Operation and performance of the ATLAS semiconductor tracker

    Get PDF
    The semiconductor tracker is a silicon microstrip detector forming part of the inner tracking system of the ATLAS experiment at the LHC. The operation and performance of the semiconductor tracker during the first years of LHC running are described. More than 99% of the detector modules were operational during this period, with an average intrinsic hit efficiency of (99.74±0.04)%. The evolution of the noise occupancy is discussed, and measurements of the Lorentz angle, δ-ray production and energy loss presented. The alignment of the detector is found to be stable at the few-micron level over long periods of time. Radiation damage measurements, which include the evolution of detector leakage currents, are found to be consistent with predictions and are used in the verification of radiation background simulations

    Search for H→γγ produced in association with top quarks and constraints on the Yukawa coupling between the top quark and the Higgs boson using data taken at 7 TeV and 8 TeV with the ATLAS detector

    Get PDF
    A search is performed for Higgs bosons produced in association with top quarks using the diphoton decay mode of the Higgs boson. Selection requirements are optimized separately for leptonic and fully hadronic final states from the top quark decays. The dataset used corresponds to an integrated luminosity of 4.5 fb−14.5 fb−1 of proton–proton collisions at a center-of-mass energy of 7 TeV and 20.3 fb−1 at 8 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. No significant excess over the background prediction is observed and upper limits are set on the tt¯H production cross section. The observed exclusion upper limit at 95% confidence level is 6.7 times the predicted Standard Model cross section value. In addition, limits are set on the strength of the Yukawa coupling between the top quark and the Higgs boson, taking into account the dependence of the tt¯H and tH cross sections as well as the H→γγ branching fraction on the Yukawa coupling. Lower and upper limits at 95% confidence level are set at −1.3 and +8.0 times the Yukawa coupling strength in the Standard Model
    corecore