635 research outputs found
Probabilistic Fragmentation and Effective Power Law
A simple fragmentation model is introduced and analysed. We show that, under
very general conditions, an effective power law for the mass distribution
arises with realistic exponent. This exponent has a universal limit, but in
practice the effective exponent depends on the detailed breaking mechanism and
the initial conditions. This dependence is in good agreement with experimental
results of fragmentation.Comment: 4 pages Revtex, 2 figures, zipped and uuencode
On-Line Distributed Traffic Grooming
This paper addresses the problem of on-line traffic grooming in WDM paths. Each request consists of a source node, a destination node, and the desired bandwidth for the connection. Connections may be multi-hop, permitting the use of multiple lightpaths. We describe a new distributed on-line algorithm for this problem that is provably wide-sense non-blocking under cer- tain assumptions. Moreover, we use simulations to demonstrate that the algorithm is extremely effective even when some of these assumptions are relaxed
Iterative Temporal Motion Planning for Hybrid Systems in Partially Unknown Environments
This paper considers the problem of motion planning for a
hybrid robotic system with complex and nonlinear dynamics
in a partially unknown environment given a temporal logic
specification. We employ a multi-layered synergistic framework
that can deal with general robot dynamics and combine
it with an iterative planning strategy. Our work allows us
to deal with the unknown environmental restrictions only
when they are discovered and without the need to repeat
the computation that is related to the temporal logic specification.
In addition, we define a metric for satisfaction of
a specification. We use this metric to plan a trajectory that
satisfies the specification as closely as possible in cases in
which the discovered constraint in the environment renders
the specification unsatisfiable. We demonstrate the efficacy
of our framework on a simulation of a hybrid second-order
car-like robot moving in an office environment with unknown
obstacles. The results show that our framework is successful
in generating a trajectory whose satisfaction measure of the
specification is optimal. They also show that, when new obstacles
are discovered, the reinitialization of our framework
is computationally inexpensive
Minimal recipes for global cloudiness
Clouds are primary modulators of Earth’s energy balance. It is thus important to understand the links connecting variabilities in cloudiness to variabilities in other state variables of the climate system, and also describe how these links would change in a changing climate. A conceptual model of global cloudiness can help elucidate these points. In this work we derive simple representations of cloudiness, that can be useful in creating a theory of global cloudiness. These representations illustrate how both spatial and temporal variability of cloudiness can be expressed in terms of basic state variables. Specifically, cloud albedo is captured by a nonlinear combination of pressure velocity and a measure of the low-level stability, and cloud longwave effect is captured by surface temperature, pressure velocity, and standard deviation of pressure velocity. We conclude with a short discussion on the usefulness of this work in the context of global warming response studies
Activation of p115-RhoGEF requires direct association of Gα13 and the Dbl homology domain
RGS-containing RhoGEFs (RGS-RhoGEFs) represent a direct link between the G(12) class of heterotrimeric G proteins and the monomeric GTPases. In addition to the canonical Dbl homology (DH) and pleckstrin homology domains that carry out the guanine nucleotide exchange factor (GEF) activity toward RhoA, these RhoGEFs also possess RGS homology (RH) domains that interact with activated α subunits of G(12) and G(13). Although the GEF activity of p115-RhoGEF (p115), an RGS-RhoGEF, can be stimulated by Gα(13), the exact mechanism of the stimulation has remained unclear. Using combined studies with small angle x-ray scattering, biochemistry, and mutagenesis, we identify an additional binding site for activated Gα(13) in the DH domain of p115. Small angle x-ray scattering reveals that the helical domain of Gα(13) docks onto the DH domain, opposite to the surface of DH that binds RhoA. Mutation of a single tryptophan residue in the α3b helix of DH reduces binding to activated Gα(13) and ablates the stimulation of p115 by Gα(13). Complementary mutations at the predicted DH-binding site in the αB-αC loop of the helical domain of Gα(13) also affect stimulation of p115 by Gα(13). Although the GAP activity of p115 is not required for stimulation by Gα(13), two hydrophobic motifs in RH outside of the consensus RGS box are critical for this process. Therefore, the binding of Gα(13) to the RH domain facilitates direct association of Gα(13) to the DH domain to regulate its exchange activity. This study provides new insight into the mechanism of regulation of the RGS-RhoGEF and broadens our understanding of G protein signaling
An Electronic Mach-Zehnder Interferometer
Double-slit electron interferometers, fabricated in high mobility
two-dimensional electron gas (2DEG), proved to be very powerful tools in
studying coherent wave-like phenomena in mesoscopic systems. However, they
suffer from small fringe visibility due to the many channels in each slit and
poor sensitivity to small currents due to their open geometry. Moreover, the
interferometers do not function in a high magnetic field, namely, in the
quantum Hall effect (QHE) regime, since it destroys the symmetry between left
and right slits. Here, we report on the fabrication and operation of a novel,
single channel, two-path electron interferometer that functions in a high
magnetic field. It is the first electronic analog of the well-known optical
Mach-Zehnder (MZ) interferometer. Based on single edge state and closed
geometry transport in the QHE regime the interferometer is highly sensitive and
exhibits very high visibility (62%). However, the interference pattern decays
precipitously with increasing electron temperature or energy. While we do not
understand the reason for the dephasing we show, via shot noise measurement,
that it is not a decoherence process that results from inelastic scattering
events.Comment: to appear in Natur
- …