2,353 research outputs found
Recommended from our members
Searching for the missing mantles of disrupted asteroids: Evidence from an olivine-rich clast in the Vaca Muerta Mesosiderite
Quasiperiodic quantum heat engines with a mobility edge
Steady-state thermoelectric machines convert heat into work by driving a
thermally-generated charge current against a voltage gradient. In this work, we
propose a new class of steady-state heat engines operating in the quantum
regime, where a quasi-periodic tight-binding model that features a mobility
edge forms the working medium. In particular, we focus on a generalization of
the paradigmatic Aubrey-Andr\'e-Harper (AAH) model, known to display a
single-particle mobility edge that separates the energy spectrum into regions
of completely delocalized and localized eigenstates. Remarkably, these two
regions can be exploited in the context of steady-state heat engines as they
correspond to ballistic and insulating transport regimes. This model also
presents the advantage that the position of the mobility edge can be controlled
via a single parameter in the Hamiltonian. We exploit this highly tunable
energy filter, along with the peculiar spectral structure of quasiperiodic
systems, to demonstrate large thermoelectric effects, exceeding existing
predictions by several orders of magnitude. This opens the route to a new class
of highly efficient and versatile quasi-periodic steady-state heat engines,
with a possible implementation using ultracold neutral atoms in bichromatic
optical lattices
Analysis and Functional Annotation of Expressed Sequence Tags from the Asian Longhorned Beetle, Anoplophora glabripennis
The Asian longhorned beetle, Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae), is one of the most economically and ecologically devastating forest insects to invade North America in recent years. Despite its substantial impact, limited effort has been expended to define the genetic and molecular make-up of this species. Considering the significant role played by late-stadia larvae in host tree decimation, a small-scale EST sequencing project was done using a cDNA library constructed from 5th -instar A. glabripennis. The resultant dataset consisted of 599 high quality ESTs that, upon assembly, yielded 381 potentially unique transcripts. Each of these transcripts was catalogued as to putative molecular function, biological process, and associated cellular component according to the Gene Ontology classification system. Using this annotated dataset, a subset of assembled sequences was identified that are putatively associated with A. glabnpennis development and metamorphosis. This work will contribute to understanding of the diverse molecular mechanisms that underlie coleopteran morphogenesis and enable the future development of novel control strategies for management of this insect pest
Implementation of a Toffoli Gate with Superconducting Circuits
The quantum Toffoli gate allows universal reversible classical computation.
It is also an important primitive in many quantum circuits and quantum error
correction schemes. Here we demonstrate the realization of a Toffoli gate with
three superconducting transmon qubits coupled to a microwave resonator. By
exploiting the third energy level of the transmon qubit, the number of
elementary gates needed for the implementation of the Toffoli gate, as well as
the total gate time can be reduced significantly in comparison to theoretical
proposals using two-level systems only. We characterize the performance of the
gate by full process tomography and Monte Carlo process certification. The gate
fidelity is found to be %.Comment: 4 pages, 5figure
What’s so bad about scientism?
In their attempt to defend philosophy from accusations of uselessness made by prominent scientists, such as Stephen Hawking, some philosophers respond with the charge of ‘scientism.’ This charge makes endorsing a scientistic stance, a mistake by definition. For this reason, it begs the question against these critics of philosophy, or anyone who is inclined to endorse a scientistic stance, and turns the scientism debate into a verbal dispute. In this paper, I propose a different definition of scientism, and thus a new way of looking at the scientism debate. Those philosophers who seek to defend philosophy against accusations of uselessness would do philosophy a much better service, I submit, if they were to engage with the definition of scientism put forth in this paper, rather than simply make it analytic that scientism is a mistake
Massive IIA flux compactifications and U-dualities
We attempt to find a rigorous formulation for the massive type IIA
orientifold compactifications of string theory introduced in hep-th/0505160. An
approximate double T-duality converts this background into IIA string theory on
a twisted torus, but various arguments indicate that the back reaction of the
orientifold on this geometry is large. In particular, an AdS calculation of the
entropy suggests a scaling appropriate for N M2-branes, in a certain limit of
the compactification, though not the one studied in hep-th/0505160. The
M-theory lift of this specific regime is not 4 dimensional. We suggest that the
generic limit of the background corresponds to a situation analogous to
F-theory, where the string coupling is small in some regions of a compact
geometry, and large in others, so that neither a long wavelength 11D SUGRA
expansion, nor a world sheet expansion exists for these compactifications. We
end with a speculation on the nature of the generic compactification.Comment: JHEP3 LaTeX - 34 pages - 3 figures; v2: Added references; v3: mistake
in entropy scaling corrected, major changes in conclusions; v4: changed
claims about original DeWolfe et al. setup, JHEP versio
The LQG -- String: Loop Quantum Gravity Quantization of String Theory I. Flat Target Space
We combine I. background independent Loop Quantum Gravity (LQG) quantization
techniques, II. the mathematically rigorous framework of Algebraic Quantum
Field Theory (AQFT) and III. the theory of integrable systems resulting in the
invariant Pohlmeyer Charges in order to set up the general representation
theory (superselection theory) for the closed bosonic quantum string on flat
target space. While we do not solve the, expectedly, rich representation theory
completely, we present a, to the best of our knowledge new, non -- trivial
solution to the representation problem. This solution exists 1. for any target
space dimension, 2. for Minkowski signature of the target space, 3. without
tachyons, 4. manifestly ghost -- free (no negative norm states), 5. without
fixing a worldsheet or target space gauge, 6. without (Virasoro) anomalies
(zero central charge), 7. while preserving manifest target space Poincar\'e
invariance and 8. without picking up UV divergences. The existence of this
stable solution is exciting because it raises the hope that among all the
solutions to the representation problem (including fermionic degrees of
freedom) we find stable, phenomenologically acceptable ones in lower
dimensional target spaces, possibly without supersymmetry, that are much
simpler than the solutions that arise via compactification of the standard Fock
representation of the string. Moreover, these new representations could solve
some of the major puzzles of string theory such as the cosmological constant
problem. The solution presented in this paper exploits the flatness of the
target space in several important ways. In a companion paper we treat the more
complicated case of curved target spaces.Comment: 46 p., LaTex2e, no figure
RFC1 repeat expansions in downbeat nystagmus syndromes: frequency and phenotypic profile
Objectives: The cause of downbeat nystagmus (DBN) remains unknown in a substantial number of patients (“idiopathic”), although intronic GAA expansions in FGF14 have recently been shown to account for almost 50% of yet idiopathic cases. Here, we hypothesized that biallelic RFC1 expansions may also represent a recurrent cause of DBN syndrome. Methods: We genotyped the RFC1 repeat and performed in-depth phenotyping in 203 patients with DBN, including 65 patients with idiopathic DBN, 102 patients carrying an FGF14 GAA expansion, and 36 patients with presumed secondary DBN. Results: Biallelic RFC1 AAGGG expansions were identified in 15/65 patients with idiopathic DBN (23%). None of the 102 GAA-FGF14-positive patients, but 2/36 (6%) of patients with presumed secondary DBN carried biallelic RFC1 expansions. The DBN syndrome in RFC1-positive patients was characterized by additional cerebellar impairment in 100% (15/15), bilateral vestibulopathy (BVP) in 100% (15/15), and polyneuropathy in 80% (12/15) of cases. Compared to GAA-FGF14-positive and genetically unexplained patients, RFC1-positive patients had significantly more frequent neuropathic features on examination and BVP. Furthermore, vestibular function, as measured by the video head impulse test, was significantly more impaired in RFC1-positive patients. Discussion: Biallelic RFC1 expansions are a common monogenic cause of DBN syndrome
Instanton Induced Neutrino Majorana Masses in CFT Orientifolds with MSSM-like spectra
Recently it has been shown that string instanton effects may give rise to
neutrino Majorana masses in certain classes of semi-realistic string
compactifications. In this paper we make a systematic search for supersymmetric
MSSM-like Type II Gepner orientifold constructions admitting boundary states
associated with instantons giving rise to neutrino Majorana masses and other L-
and/or B-violating operators. We analyze the zero mode structure of D-brane
instantons on general type II orientifold compactifications, and show that only
instantons with O(1) symmetry can have just the two zero modes required to
contribute to the 4d superpotential. We however discuss how the addition of
fluxes and/or possible non-perturbative extensions of the orientifold
compactifications would allow also instantons with and U(1) symmetries
to generate such superpotentials. In the context of Gepner orientifolds with
MSSM-like spectra, we find no models with O(1) instantons with just the
required zero modes to generate a neutrino mass superpotential. On the other
hand we find a number of models in one particular orientifold of the Gepner
model with instantons with a few extra uncharged
non-chiral zero modes which could be easily lifted by the mentioned effects. A
few more orientifold examples are also found under less stringent constraints
on the zero modes. This class of instantons have the interesting
property that R-parity conservation is automatic and the flavour structure of
the neutrino Majorana mass matrices has a simple factorized form.Comment: 68 pages, 2 figures; v2. typos corrected, refs adde
- …