732 research outputs found
Stiff polymer in monomer ensemble
We make use of the previously developed formalism for a monomer ensemble and
include angular dependence of the segments of the polymer chains thus
described. In particular we show how to deal with stiffness when the polymer
chain is confined to certain regions. We investigate the stiffness from the
perspectives of a differential equation, integral equations, or recursive
relations for both continuum and lattice models. Exact analytical solutions are
presented for two cases, whereas numerical results are shown for a third case.Comment: 10 pages, including 6 figure
The effects of socioeconomic status and indices of physical environment on reduced birth weight and preterm births in Eastern Massachusetts
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Air pollution and social characteristics have been shown to affect indicators of health. While use of spatial methods to estimate exposure to air pollution has increased the power to detect effects, questions have been raised about potential for confounding by social factors.Methods: A study of singleton births in Eastern Massachusetts was conducted between 1996 and 2002 to examine the association between indicators of traffic, land use, individual and area-based socioeconomic measures (SEM), and birth outcomes ( birth weight, small for gestational age and preterm births), in a two-level hierarchical model.Results: We found effects of both individual ( education, race, prenatal care index) and area-based ( median household income) SEM with all birth outcomes. The associations for traffic and land use variables were mainly seen with birth weight, with an exception for an effect of cumulative traffic density on small for gestational age. Race/ethnicity of mother was an important predictor of birth outcomes and a strong confounder for both area-based SEM and indices of physical environment. The effects of traffic and land use differed by level of education and median household income.Conclusion: Overall, the findings of the study suggested greater likelihood of reduced birth weight and preterm births among the more socially disadvantaged, and a greater risk of reduced birth weight associated with traffic exposures. Results revealed the importance of controlling simultaneously for SEM and environmental exposures as the way to better understand determinants of health.This work is supported by the Harvard Environmental Protection Agency (EPA) Center,
Grants R827353 and R-832416, and National Institute for Environmental Health Science (NIEHS) ES-0002
Elasticity of semiflexible polymers with and without self-interactions
A {\it new} formula for the force vs extension relation is derived from the
discrete version of the so called {\it worm like chain} model. This formula
correctly fits some recent experimental data on polymer stretching and some
numerical simulations with pairwise repulsive potentials. For a more realistic
Lennard-Jones potential the agreement with simulations is found to be good when
the temperature is above the temperature. For lower temperatures a
plateau emerges, as predicted by some recent experimental and theoretical
results, and our formula gives good results only in the high force regime. We
briefly discuss how other kinds of self-interactions are expected to affect the
elasticity of the polymer.Comment: 8 pages, 10 figure
Probing Polyelectrolyte Elasticity Using Radial Distribution Function
We study the effect of electrostatic interactions on the distribution
function of the end-to-end distance of a single polyelectrolyte chain in the
rodlike limit. The extent to which the radial distribution function of a
polyelectrolyte is reproduced by that of a wormlike chain with an adjusted
persistence length is investigated. Strong evidence is found for a universal
scaling formula connecting the effective persistence length of a
polyelectrolyte with its linear charge density and the Debye screening of its
self-interaction. An alternative definition of the electrostatic persistence
length is proposed based on matching of the maximum of the distribution with
that of an effective wormlike chain, as opposed to the traditional matching of
the first or the second moments of the distributions. It is shown that this
definition provides a more accurate probe of the affinity of the distribution
to that of the wormlike chains, as compared to the traditional definition. It
is also found that the length of a polyelectrolyte segment can act as a crucial
parameter in determining its elastic properties.Comment: 15 pages, 19 figure
Construction of the Literature Graph in Semantic Scholar
We describe a deployed scalable system for organizing published scientific
literature into a heterogeneous graph to facilitate algorithmic manipulation
and discovery. The resulting literature graph consists of more than 280M nodes,
representing papers, authors, entities and various interactions between them
(e.g., authorships, citations, entity mentions). We reduce literature graph
construction into familiar NLP tasks (e.g., entity extraction and linking),
point out research challenges due to differences from standard formulations of
these tasks, and report empirical results for each task. The methods described
in this paper are used to enable semantic features in www.semanticscholar.orgComment: To appear in NAACL 2018 industry trac
Networked buffering: a basic mechanism for distributed robustness in complex adaptive systems
A generic mechanism - networked buffering - is proposed for the generation of robust traits in complex systems. It requires two basic conditions to be satisfied: 1) agents are versatile enough to perform more than one single functional role within a system and 2) agents are degenerate, i.e. there exists partial overlap in the functional capabilities of agents. Given these prerequisites, degenerate systems can readily produce a distributed systemic response to local perturbations. Reciprocally, excess resources related to a single function can indirectly support multiple unrelated functions within a degenerate system. In models of genome:proteome mappings for which localized decision-making and modularity of genetic functions are assumed, we verify that such distributed compensatory effects cause enhanced robustness of system traits. The conditions needed for networked buffering to occur are neither demanding nor rare, supporting the conjecture that degeneracy may fundamentally underpin distributed robustness within several biotic and abiotic systems. For instance, networked buffering offers new insights into systems engineering and planning activities that occur under high uncertainty. It may also help explain recent developments in understanding the origins of resilience within complex ecosystems. \ud
\u
Production and characterization of carbamazepine nanocrystals by electrospraying for continuous pharmaceutical manufacturing
In this paper, an electrospray technique followed by annealing at high temperatures was developed to produce nanocrystals of carbamazepine (CBZ), a poorly water-soluble drug, for continuous pharmaceutical manufacturing process. Electrospraying solutions of CBZ in methanol obeys the expected scaling law of current, which is I ∼ Q[superscript 1/2] (I, electrical current; Q, flow rate), for liquids with sufficiently high conductivity and viscosity. Lower flow rates during electrospraying were preferred to produce smaller diameters of monodisperse, dense CBZ nanoparticles. CBZ nanoparticles were predominantly amorphous immediately after electrospraying. Crystallization of CBZ nanoparticles was accelerated by annealing at high temperatures. CBZ nanocrystals with the most stable polymorph, form III, were obtained by annealing at 90°C, which is above the transition temperature, 78°C, for the enantiotropic CBZ form III and form I. The solubility and dissolution rates of CBZ nanocrystals increased significantly as compared with those of CBZ bulk particles. Therefore, electrospray technology has the potential to produce pharmaceutical dosage forms with enhanced bioavailability and can readily be integrated in a continuous pharmaceutical manufacturing process.Novartis-MIT Center for Continuous Manufacturin
miRNA-Dependent Translational Repression in the Drosophila Ovary
Background: The Drosophila ovary is a tissue rich in post-transcriptional regulation of gene expression. Many of the regulatory factors are proteins identified via genetic screens. The more recent discovery of microRNAs, which in other animals and tissues appear to regulate translation of a large fraction of all mRNAs, raised the possibility that they too might act during oogenesis. However, there has been no direct demonstration of microRNA-dependent translational repression in the ovary. Methodology/Principal Findings: Here, quantitative analyses of transcript and protein levels of transgenes with or without synthetic miR-312 binding sites show that the binding sites do confer translational repression. This effect is dependent on the ability of the cells to produce microRNAs. By comparison with microRNA-dependent translational repression in other cell types, the regulated mRNAs and the protein factors that mediate repression were expected to be enriched in sponge bodies, subcellular structures with extensive similarities to the P bodies found in other cells. However, no such enrichment was observed. Conclusions/Significance: Our results reveal the variety of post-transcriptional regulatory mechanisms that operate in the Drosophila ovary, and have implications for the mechanisms of miRNA-dependent translational control used in the ovary.This work was supported in part by NIH grant GM54409 and in part by Research Grant No. 1-FY08-445. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Cellular and Molecular Biolog
Electrostatic free energy landscapes for nucleic acid helix assembly
Metal ions are crucial for nucleic acid folding. From the free energy landscapes, we investigate the detailed mechanism for ion-induced collapse for a paradigm system: loop-tethered short DNA helices. We find that Na(+) and Mg(2+) play distinctive roles in helix–helix assembly. High [Na(+)] (>0.3 M) causes a reduced helix–helix electrostatic repulsion and a subsequent disordered packing of helices. In contrast, Mg(2+) of concentration >1 mM is predicted to induce helix–helix attraction and results in a more compact and ordered helix–helix packing. Mg(2+) is much more efficient in causing nucleic acid compaction. In addition, the free energy landscape shows that the tethering loops between the helices also play a significant role. A flexible loop, such as a neutral loop or a polynucleotide loop in high salt concentration, enhances the close approach of the helices in order to gain the loop entropy. On the other hand, a rigid loop, such as a polynucleotide loop in low salt concentration, tends to de-compact the helices. Therefore, a polynucleotide loop significantly enhances the sharpness of the ion-induced compaction transition. Moreover, we find that a larger number of helices in the system or a smaller radius of the divalent ions can cause a more abrupt compaction transition and a more compact state at high ion concentration, and the ion size effect becomes more pronounced as the number of helices is increased
- …