3 research outputs found

    Effects of autologous bone marrow stem cell transplantation on beta-adrenoceptor density and electrical activation pattern in a rabbit model of non-ischemic heart failure

    Get PDF
    BACKGROUND: Since only little is known on stem cell therapy in non-ischemic heart failure we wanted to know whether a long-term improvement of cardiac function in non-ischemic heart failure can be achieved by stem cell transplantation. METHODS: White male New Zealand rabbits were treated with doxorubicine (3 mg/kg/week; 6 weeks) to induce dilative non-ischemic cardiomyopathy. Thereafter, we obtained autologous bone marrow stem cells (BMSC) and injected 1.5–2.0 Mio cells in 1 ml medium by infiltrating the myocardium via a left anterolateral thoracotomy in comparison to sham-operated rabbits. 4 weeks later intracardiac contractility was determined in-vivo using a Millar catheter. Thereafter, the heart was excised and processed for radioligand binding assays to detect β(1)- and β(2)-adrenoceptor density. In addition, catecholamine plasma levels were determined via HPLC. In a subgroup we investigated cardiac electrophysiology by use of 256 channel mapping. RESULTS: In doxorubicine-treated animals β-adrenoceptor density was significantly down-regulated in left ventricle and septum, but not in right ventricle, thereby indicating a typical left ventricular heart failure. Sham-operated rabbits exhibited the same down-regulation. In contrast, BMSC transplantation led to significantly less β-adrenoceptor down-regulation in septum and left ventricle. Cardiac contractility was significantly decreased in heart failure and sham-operated rabbits, but was significantly higher in BMSC-transplanted hearts. Norepinephrine and epinephrine plasma levels were enhanced in heart failure and sham-operated animals, while these were not different from normal in BMSC-transplanted animals. Electrophysiological mapping revealed unaltered electrophysiology and did not show signs of arrhythmogeneity. CONCLUSION: BMSC transplantation improves sympathoadrenal dysregualtion in non-ischemic heart failure

    Producing fluid flow using 3D carbon electrodes - art. no. 012072

    No full text
    Moving and manipulating bio-particles and fluids on the microscale is central to many lab-on-a-chip applications. Techniques for pumping fluids which use electric fields have shown promise using both DC and AC voltages. AC techniques, however, require the use of integrated metal electrodes which have a low resistance but can suffer from unwanted chemical reactions even at low potentials. In this paper we introduce the use of carbon MEMS technology (C-MEMS), a fabrication method which produces 3D conductive polymeric structures. Results are presented of the fabrication of an innovative design of 3D AC-electroosmotic micropump and preliminary experimental measurements which demonstrate the potential of both the technology and the design
    corecore