32 research outputs found

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Chemosensory burst coding by mouse vomeronasal sensory neurons

    No full text
    The capabilities of any sensory system are ultimately constrained by the properties of the sensory neurons: the ability to detect and represent stimuli is limited by noise due to spontaneous activity, and optimal decoding in downstream circuitry must be matched to the nature of the encoding performed at the input. Here, we investigated the firing properties of sensory neurons in the accessory olfactory system, a distinct sensory system specialized for detection of socially relevant odors. Using multielectrode array recording, we observed that sensory neurons are spontaneously active and highly variable across time and trials and that this spontaneous activity limits the ability to distinguish sensory responses from noise. Sensory neuron activity tended to consist of bursts that maintained remarkably consistent statistics during both spontaneous activity and in response to stimulation with sulfated steroids. This, combined with pharmacological and genetic intervention in the signal transduction cascade, indicates that sensory transduction plays a role in shaping overall spontaneous activity. These findings indicate that as-yet unexplored characteristics of the sensory transduction cascade significantly constrain the representation of sensory information by vomeronasal neurons
    corecore