1 research outputs found

    θ13\theta_{13} and the Higgs mass from high scale supersymmetry

    Full text link
    In the framework in which supersymmetry is used for understanding fermion masses rather than stabilizing the electroweak scale, we elaborate the phenomenological analysis for the neutrino physics. A relatively large sinθ13\sin{\theta_{13}} is the natural result. The model further predicts vanishingly small CP violation in neutrino oscillations. And θ23\theta_{23} is not necessarily maximal. While the high scale supersymmetry generically results in a Higgs mass of about 141 GeV, our model reduces this mass via introducing SU(2)L_L triplet fields which also contribute to neutrino masses.Comment: 13 pages, no figure, revtex4, revised versio
    corecore