9 research outputs found

    Regularity of a kind of marginal functions in Hilbert spaces

    Get PDF
    We study well-posedness of some mathematical programming problem depending on a parameter that generalizes in a certain sense the metric projection onto a closed nonconvex set. We are interested in regularity of the set of minimizers as well as of the value function, which can be seen, on one hand, as the viscosity solution to a Hamilton-Jacobi equation, while, on the other, as the minimal time in some related optimal time control problem. The regularity includes both the Fréchet differentiability of the value function and the Hölder continuity of its (Fréchet) gradient

    Stationarity and Regularity of Infinite Collections of Sets

    Full text link
    This article investigates extremality, stationarity, and regularity properties of infinite collections of sets in Banach spaces. Our approach strongly relies on the machinery developed for finite collections. When dealing with an infinite collection of sets, we examine the behavior of its finite subcollections. This allows us to establish certain primal-dual relationships between the stationarity/regularity properties some of which can be interpreted as extensions of the Extremal principle. Stationarity criteria developed in the article are applied to proving intersection rules for Fréchet normals to infinite intersections of sets in Asplund spaces. © 2012 Springer Science+Business Media, LLC

    Elementary and Viscosity Subdifferentials

    Full text link

    References

    Full text link
    corecore