3 research outputs found

    Gravitational excitons from extra dimensions

    Get PDF
    Inhomogeneous multidimensional cosmological models with a higher dimensional space-time manifold are investigated under dimensional reduction. In the Einstein conformal frame, small excitations of the scale factors of the internal spaces near minima of an effective potential have a form of massive scalar fields in the external space-time. Parameters of models which ensure minima of the effective potentials are obtained for particular cases and masses of gravitational excitons are estimated.Comment: Revised version --- 12 references added, Introduction enlarged, 20 pages, LaTeX, to appear in Phys.Rev.D56 (15.11.97

    The significance of the largest scale CMB fluctuations in WMAP

    Full text link
    We investigate anomalies reported in the Cosmic Microwave Background maps from the Wilkinson Microwave Anisotropy Probe (WMAP) satellite on very large angular scales and discuss possible interpretations. Three independent anomalies involve the quadrupole and octopole: 1. The cosmic quadrupole on its own is anomalous at the 1-in-20 level by being low (the cut-sky quadrupole measured by the WMAP team is more strikingly low, apparently due to a coincidence in the orientation of our Galaxy of no cosmological significance); 2. The cosmic octopole on its own is anomalous at the 1-in-20 level by being very planar; 3. The alignment between the quadrupole and octopole is anomalous at the 1-in-60 level. Although the a priori chance of all three occurring is 1 in 24000, the multitude of alternative anomalies one could have looked for dilutes the significance of such a posteriori statistics. The simplest small universe model where the universe has toroidal topology with one small dimension of order half the horizon scale, in the direction towards Virgo, could explain the three items above. However, we rule this model out using two topological tests: the S-statistic and the matched circle test.Comment: N.B. that our results do not rule out the recently proposed dodecahedron model of Luminet, Weeks, Riazuelo, Lehoucq & Uzan, which has a 36 degree twist between matched circles. 12 pages, 5 figs; more info at http://www.hep.upenn.edu/~angelica/topology.htm
    corecore