75 research outputs found
Theoretical study of the two-proton halo candidate Ne including contributions from resonant continuum and pairing correlations
With the relativistic Coulomb wave function boundary condition, the energies,
widths and wave functions of the single proton resonant orbitals for Ne
are studied by the analytical continuation of the coupling constant (ACCC)
approach within the framework of the relativistic mean field (RMF) theory.
Pairing correlations and contributions from the single-particle resonant
orbitals in the continuum are taken into consideration by the resonant
Bardeen-Cooper-Schrieffer (BCS) approach, in which constant pairing strength is
used. It can be seen that the fully self-consistent calculations with NL3 and
NLSH effective interactions mostly agree with the latest experimental
measurements, such as binding energies, matter radii, charge radii and
densities. The energy of 2s orbital is slightly higher than that
of orbital, and the occupation probability of the
2s orbital is about 20%, which are in accordance with the
shell model calculation and three-body model estimation
Alpha-decay branching ratios of near-threshold states in 19Ne and the astrophysical rate of 15O(alpha,gamma)19Ne
The 15O(alpha,gamma)19Ne reaction is one of two routes for breakout from the
hot CNO cycles into the rp process in accreting neutron stars. Its
astrophysical rate depends critically on the decay properties of excited states
in 19Ne lying just above the 15O + alpha threshold. We have measured the
alpha-decay branching ratios for these states using the p(21Ne,t)19Ne reaction
at 43 MeV/u. Combining our measurements with previous determinations of the
radiative widths of these states, we conclude that no significant breakout from
the hot CNO cycle into the rp process in novae is possible via
15O(alpha,gamma)19Ne, assuming current models accurately represent their
temperature and density conditions
First observation of the ( 4 He, 8 B) reaction
The ( 4 He, 8 B) reaction on 27 Al and 66 Zn targets has been studied at E α =109MeV, the first observation of this reaction. Five groups appear in the first 4 MeV of excitation in the 23 Ne spectrum, with laboratory differential cross sections ranging from 35 to 384 nb/sr at θ lab =8 0 . Individual levels in 62 Co were not resolved in the exposure on the 66 Zn target. However, 8 B events were observed which are tentatively attributed to the 66 Zn(α, 8 B) 62 Co reaction, since contributions from plausible target contaminants can be eliminated on the basis of Q value. The observed yield at 8 0 indicates a laboratory cross section of 540 nb/sr summed over the first 4.6 MeV of excitation in 62 Co.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45824/1/10050_2005_Article_BF01547474.pd
Coulomb and nuclear excitations of narrow resonances in Ne-17
New experimental data for dissociation of relativistic 17Ne projectiles incident on targets of lead, carbon, and polyethylene targets at GSI are presented. Special attention is paid to the excitation and decay of narrow resonant states in 17Ne. Distributions of internal energy in the O15+p+p three-body system have been determined together with angular and partial-energy correlations between the decay products in different energy regions. The analysis was done using existing experimental data on 17Ne and its mirror nucleus 17N. The isobaric multiplet mass equation is used for assignment of observed resonances and their spins and parities. A combination of data from the heavy and light targets yielded cross sections and transition probabilities for the Coulomb excitations of the narrow resonant states. The resulting transition probabilities provide information relevant for a better understanding of the 17Ne structure
Observation of a Coherence Length Effect in Exclusive Rho^0 Electroproduction
Exclusive incoherent electroproduction of the rho^0(770) meson from 1H, 2H,
3He, and 14N targets has been studied by the HERMES experiment at squared
four-momentum transfer Q**2>0.4 GeV**2 and positron energy loss nu from 9 to 20
GeV. The ratio of the 14N to 1H cross sections per nucleon, known as the
nuclear transparency, was found to decrease with increasing coherence length of
quark-antiquark fluctuations of the virtual photon. The data provide clear
evidence of the interaction of the quark- antiquark fluctuations with the
nuclear medium.Comment: RevTeX, 5 pages, 3 figure
Determination of the Deep Inelastic Contribution to the Generalised Gerasimov-Drell-Hearn Integral for the Proton and Neutron
The virtual photon absorption cross section differences [sigma_1/2-sigma_3/2]
for the proton and neutron have been determined from measurements of polarised
cross section asymmetries in deep inelastic scattering of 27.5 GeV
longitudinally polarised positrons from polarised 1H and 3He internal gas
targets. The data were collected in the region above the nucleon resonances in
the kinematic range nu < 23.5 GeV and 0.8 GeV**2 < Q**2 < 12 GeV**2. For the
proton the contribution to the generalised Gerasimov-Drell-Hearn integral was
found to be substantial and must be included for an accurate determination of
the full integral. Furthermore the data are consistent with a QCD
next-to-leading order fit based on previous deep inelastic scattering data.
Therefore higher twist effects do not appear significant.Comment: 6 pages, 3 figures, 1 table, revte
Measurement of the Neutron Spin Structure Function with a Polarized ^3He Target
Results are reported from the HERMES experiment at HERA on a measurement of
the neutron spin structure function in deep inelastic scattering
using 27.5 GeV longitudinally polarized positrons incident on a polarized
He internal gas target. The data cover the kinematic range
and . The integral evaluated at a fixed of is . Assuming Regge behavior at low , the first
moment is .Comment: 4 pages TEX, text available at
http://www.krl.caltech.edu/preprints/OAP.htm
Flavor Decomposition of the Polarized Quark Distributions in the Nucleon from Inclusive and Semi-inclusive Deep-inelastic Scattering
Spin asymmetries of semi-inclusive cross sections for the production of
positively and negatively charged hadrons have been measured in deep-inelastic
scattering of polarized positrons on polarized hydrogen and 3He targets, in the
kinematic range 0.023<x<0.6 and 1 GeV^2<Q^2<10 GeV^2. Polarized quark
distributions are extracted as a function of x for up $(u+u_bar) and down
(d+d_bar) flavors. The up quark polarization is positive and the down quark
polarization is negative in the measured range. The polarization of the sea is
compatible with zero. The first moments of the polarized quark distributions
are presented. The isospin non-singlet combination Delta_q_3 is consistent with
the prediction based on the Bjorken sum rule. The moments of the polarized
quark distributions are compared to predictions based on SU(3)_f flavor
symmetry and to a prediction from lattice QCD.Comment: 14 pages, 6 figures (eps format), 10 tables in Latex New version
contains tables of asymmetries and correlation matri
Coherent π0 photoproduction on the deuteron up to 4 GeV
The differential cross section for 2H(γ,d)π0 has been measured at deuteron center-of-mass angles of 90° and 136°. This work reports the first data for this reaction above a photon energy of 1 GeV, and permits a test of the apparent constituent counting rule and reduced nuclear amplitude behavior as observed in elastic ed scattering. Measurements were performed up to a photon energy of 4.0 GeV, and are in good agreement with previous lower energy measurements. Overall, the data are inconsistent with both constituent-counting rule and reduced nuclear amplitude predictions
Quasielastic (e,e′p) reaction on 12C,56Fe, and 197Au
We report the results from a systematic study of the quasielastic (e,e′p) reaction on 12C, 56Fe, and 197Au performed at Jefferson Lab. We have measured nuclear transparency and extracted spectral functions (corrected for radiation) over a Q2 range of 0.64–3.25 (GeV∕c)2 for all three nuclei. In addition, we have extracted separated longitudinal and transverse spectral functions at Q2 of 0.64 and 1.8 (GeV∕c)2 for these three nuclei (except for 197Au at the higher Q2). The spectral functions are compared to a number of theoretical calculations. The measured spectral functions differ in detail but not in overall shape from most of the theoretical models. In all three targets the measured spectral functions show considerable excess transverse strength at Q2=0.64 (GeV∕c)2, which is much reduced at 1.8 (GeV∕c)2
- …