1 research outputs found
Vanishing Viscous Limits for 3D Navier-Stokes Equations with A Navier-Slip Boundary Condition
In this paper, we investigate the vanishing viscosity limit for solutions to
the Navier-Stokes equations with a Navier slip boundary condition on general
compact and smooth domains in . We first obtain the higher order
regularity estimates for the solutions to Prandtl's equation boundary layers.
Furthermore, we prove that the strong solution to Navier-Stokes equations
converges to the Eulerian one in and
L^\infty((0,T)\times\o), where is independent of the viscosity, provided
that initial velocity is regular enough. Furthermore, rates of convergence are
obtained also.Comment: 45page