4 research outputs found

    The Upper Critical Field in Disordered Two-Dimensional Superconductors

    Full text link
    We present calculations of the upper critical field in superconducting films as a function of increasing disorder (as measured by the normal state resistance per square). In contradiction to previous work, we find that there is no anomalous low-temperature positive curvature in the upper critical field as disorder is increased. We show that the previous prediction of this effect is due to an unjustified analytical approximation of sums occuring in the perturbative calculation. Our treatment includes both a careful analysis of first-order perturbation theory, and a non-perturbative resummation technique. No anomalous curvature is found in either case. We present our results in graphical form.Comment: 11 pages, 8 figure

    Effect of Magnetic Impurities on Suppression of the Transition Temperature in Disordered Superconductors

    Full text link
    We calculate the first-order perturbative correction to the transition temperature TcT_c in a superconductor with both non-magnetic and magnetic impurities. We do this by first evaluating the correction to the effective potential, Ω(Δ)\Omega(\Delta), and then obtain the first-order correction to the order parameter, Δ\Delta, by finding the minimum of Ω(Δ)\Omega(\Delta). Setting Δ=0\Delta=0 finally allows TcT_c to be evaluated. TcT_c is now a function of both the resistance per square, R□R_\square, a measure of the non-magnetic disorder, and the spin-flip scattering rate, 1/τs1/\tau_s, a measure of the magnetic disorder. We find that the effective pair-breaking rate per magnetic impurity is virtually independent of the resistance per square of the film, in agreement with an experiment of Chervenak and Valles. This conclusion is supported by both the perturbative calculation, and by a non-perturbative re-summation technique.Comment: 29 pages, 9 figure
    corecore