408 research outputs found
Toward Better Understanding on How Group A <em>Streptococcus</em> Manipulates Human Fibrinolytic System
Group A Streptococcus pyogenes (GAS) is a human pathogen that commonly causes superficial infections such as pharyngitis, but can also lead to systemic and fatal diseases. GAS infection remains to be a major threat in regions with insufficient medical infrastructures, leading to half a million deaths annually worldwide. The pathogenesis of GAS is mediated by a number of virulence factors, which function to facilitate bacterial colonization, immune evasion, and deep tissue invasion. In this review, we will discuss the mechanism of molecular interaction between the host protein and virulence factors that target the fibrinolytic system, including streptokinase (SK), plasminogen-binding group A streptococcal M-like protein (PAM), and streptococcal inhibitor of complement (SIC). We will discuss our current understanding, through structural studies, on how these proteins manipulate the fibrinolytic system during infection
Purity of Gaussian states: measurement schemes and time-evolution in noisy channels
We present a systematic study of the purity for Gaussian states of
single-mode continuous variable systems. We prove the connection of purity to
observable quantities for these states, and show that the joint measurement of
two conjugate quadratures is necessary and sufficient to determine the purity
at any time. The statistical reliability and the range of applicability of the
proposed measurement scheme is tested by means of Monte Carlo simulated
experiments. We then consider the dynamics of purity in noisy channels. We
derive an evolution equation for the purity of general Gaussian states both in
thermal and squeezed thermal baths. We show that purity is maximized at any
given time for an initial coherent state evolving in a thermal bath, or for an
initial squeezed state evolving in a squeezed thermal bath whose asymptotic
squeezing is orthogonal to that of the input state.Comment: 9 Pages, 6 Figures; minor errors correcte
Constraining the magnitude of the Chiral Magnetic Effect with Event Shape Engineering in Pb-Pb collisions at = 2.76$ TeV
In ultrarelativistic heavy-ion collisions, the event-by-event variation of
the elliptic flow reflects fluctuations in the shape of the initial state
of the system. This allows to select events with the same centrality but
different initial geometry. This selection technique, Event Shape Engineering,
has been used in the analysis of charge-dependent two- and three-particle
correlations in Pb-Pb collisions at TeV. The
two-particle correlator ,
calculated for different combinations of charges and , is
almost independent of (for a given centrality), while the three-particle
correlator
scales almost linearly both with the event and charged-particle
pseudorapidity density. The charge dependence of the three-particle correlator
is often interpreted as evidence for the Chiral Magnetic Effect (CME), a parity
violating effect of the strong interaction. However, its measured dependence on
points to a large non-CME contribution to the correlator. Comparing the
results with Monte Carlo calculations including a magnetic field due to the
spectators, the upper limit of the CME signal contribution to the
three-particle correlator in the 10-50% centrality interval is found to be
26-33% at 95% confidence level.Comment: 20 pages, 6 captioned figures, 1 tables, authors from page 15,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/382
Energy dependence of exclusive photoproduction off protons in ultra-peripheral p-Pb collisions at = 5.02 TeV
The ALICE Collaboration has measured the energy dependence of exclusive
photoproduction of vector mesons off proton targets in
ultra-peripheral p-Pb collisions at a centre-of-mass energy per nucleon pair
TeV. The ee and decay channels
are used to measure the cross section as a function of the rapidity of the
in the range , corresponding to an energy in the
p centre-of-mass in the interval GeV.
The measurements, which are consistent with a power law dependence of the
exclusive photoproduction cross section, are compared to previous
results from HERA and the LHC and to several theoretical models. They are found
to be compatible with previous measurements.Comment: 25 pages, 3 captioned figures, 3 tables, authors from page 19,
published version, figures at http://alice-publications.web.cern.ch/node/455
Overview of the SME: Implications and Phenomenology of Lorentz Violation
The Standard Model Extension (SME) provides the most general
observer-independent field theoretical framework for investigations of Lorentz
violation. The SME lagrangian by definition contains all Lorentz-violating
interaction terms that can be written as observer scalars and that involve
particle fields in the Standard Model and gravitational fields in a generalized
theory of gravity. This includes all possible terms that could arise from a
process of spontaneous Lorentz violation in the context of a more fundamental
theory, as well as terms that explicitly break Lorentz symmetry. An overview of
the SME is presented, including its motivations and construction. Some of the
theoretical issues arising in the case of spontaneous Lorentz violation are
discussed, including the question of what happens to the Nambu-Goldstone modes
when Lorentz symmetry is spontaneously violated and whether a Higgs mechanism
can occur. A minimal version of the SME in flat Minkowski spacetime that
maintains gauge invariance and power-counting renormalizability is used to
search for leading-order signals of Lorentz violation. Recent Lorentz tests in
QED systems are examined, including experiments with photons, particle and
atomic experiments, proposed experiments in space and experiments with a
spin-polarized torsion pendulum.Comment: 40 pages, Talk presented at Special Relativity: Will it Survive the
Next 100 Years? Potsdam, Germany, February, 200
Simple Dynamics on the Brane
We apply methods of dynamical systems to study the behaviour of the
Randall-Sundrum models. We determine evolutionary paths for all possible
initial conditions in a 2-dimensional phase space and we investigate the set of
accelerated models. The simplicity of our formulation in comparison to some
earlier studies is expressed in the following: our dynamical system is a
2-dimensional Hamiltonian system, and what is more advantageous, it is free
from the degeneracy of critical points so that the system is structurally
stable. The phase plane analysis of Randall-Sundrum models with isotropic
Friedmann geometry clearly shows that qualitatively we deal with the same types
of evolution as in general relativity, although quantitatively there are
important differences.Comment: an improved version, 34 pages, 9 eps figure
Electroluminescence from chirality-sorted (9,7)-semiconducting carbon nanotube devices
We have measured the electroluminescence and photoluminescence of (9,7)
semiconducting carbon nanotube devices and demonstrate that the
electroluminescence wavelength is determined by the nanotube's chiral index
(n,m). The devices were fabricated on Si3N4 membranes by dielectrophoretic
assembly of tubes from monochiral dispersion. Electrically driven (9,7) devices
exhibit a single Lorentzian shaped emission peak at 825 nm in the visible part
of the spectrum. The emission could be assigned to the excitonic E22 interband
transition by comparison of the electroluminescence spectra with corresponding
photoluminescence excitation maps. We show a linear dependence of the EL peak
width on the electrical current, and provide evidence for the inertness of
Si3N4 surfaces with respect to the nanotubes optical properties.Comment: 6 pages, 3 figures, submitted to Optics Expres
Quantum optics in the phase space - A tutorial on Gaussian states
In this tutorial, we introduce the basic concepts and mathematical tools
needed for phase-space description of a very common class of states, whose
phase properties are described by Gaussian Wigner functions: the Gaussian
states. In particular, we address their manipulation, evolution and
characterization in view of their application to quantum information.Comment: Tutorial. 23 pages, 1 figure. Updated version accepted for
publication in EPJ - ST devoted to the memory of Federico Casagrand
- …