32 research outputs found

    Compaction of Rods: Relaxation and Ordering in Vibrated, Anisotropic Granular Material

    Full text link
    We report on experiments to measure the temporal and spatial evolution of packing arrangements of anisotropic, cylindrical granular material, using high-resolution capacitive monitoring. In these experiments, the particle configurations start from an initially disordered, low-packing-fraction state and under vertical vibrations evolve to a dense, highly ordered, nematic state in which the long particle axes align with the vertical tube walls. We find that the orientational ordering process is reflected in a characteristic, steep rise in the local packing fraction. At any given height inside the packing, the ordering is initiated at the container walls and proceeds inward. We explore the evolution of the local as well as the height-averaged packing fraction as a function of vibration parameters and compare our results to relaxation experiments conducted on spherically shaped granular materials.Comment: 9 pages incl. 7 figure

    Influences de la sylviculture sur le risque de dégâts biotiques et abiotiques dans les peuplements forestiers

    Full text link

    Fifteen Years of Gene Therapy Based on Chimeric Antigen Receptors: “Are We Nearly There Yet?”

    No full text
    “T-body” or chimeric antigen receptor (CAR) technology, which combines the specificity of an antibody with the homing, tissue penetration, and target cell destruction of T cells, was first described in 1993. After many years of unmet promise, significant improvements in gene transfer, including the development of efficient retroviral vectors for transduction of human T cells, and better understanding of immunological pathways and immune cell interactions, are allowing this technology to reach a critical phase of evaluation, in which we will learn whether the approach can truly meet expectations. In this review we summarize the concept of CAR-based immunotherapy, describe the steps accomplished, and outline the future progress we need to make if this approach is truly to improve cancer immunotherapy

    Development of adoptive cell therapy for cancer: A clinical perspective

    No full text
    Adoptive cellular therapy provides the promise of a potentially powerful general treatment for cancer. Although this is a complex and challenging field, there have been major advances in basic and translational research resulting in clinical trial activity that is now beginning to confirm this promise. However, these trials are also identifying new challenges and this review focuses on these clinical issues. For tumors such as melanoma, in which tumor-specific T cells can be readily identified and isolated, the adoptive transfer of "tumor-infiltrating lymphocytes" (TILs) already appears to offer significant patient benefit and this approach now warrants further development. Genetically engineered T cells offer a means to endow peripheral blood T cells with antitumor activity and in principle these techniques could allow the treatment of a wide range of cancers. Genetic engineering also offers the means to endow T cells with new properties and enhanced functions. There have been clear proof-of-principle trials showing responses with T cell receptor (TCR)-engineered T cells and this can be built on with further development. By contrast, other trials have produced significant toxicity related to expression of target antigen on normal tissue, particularly with enhanced receptors. The challenge ahead lies in understanding how to achieve the balance between targeted antitumor immune responses while avoiding toxicity associated with on-target destruction of antigen-expressing normal tissues. Cellular therapy of cancer will need continued preclinical evaluation as well as carefully designed clinical trials addressing the various issues. For these challenges to be fully assessed, and for progression to a widely used, effective and safe therapy, development as cooperative groups is an appropriate way forward
    corecore