32 research outputs found

    End-organ resistance to growth hormone and IGF-I in epiphyseal chondrocytes of rats with chronic renal failure

    Get PDF
    End-organ resistance to growth hormone and IGF-I in epiphyseal chondrocytes of rats with chronic renal failure. We tested the hypothesis that there is direct end-organ resistance to growth hormone (GH) and IGF-I in chronic renal failure (CRF) independent of circulating inhibitors. Male Sprague-Dawley rats underwent 5/6 nephrectomy and were pair-fed with weight matched (100 g) sham operated controls for two weeks. Rats with CRF had significantly higher serum creatinine and blood urea nitrogen (P < 0.01 in both cases) and gained significantly less weight and length (P < 0.01 in both cases) compared with controls. Epiphyseal chondrocytes were grown in 10% fetal calf serum (FCS). Both CRF cells and control cells maintained chondrogenic phenotypes, and showed immunohistochemical staining with antibodies to collagen II and proteoglycan (aggrecan). Distribution of the cell subpopulations according to cell size (by flow cytometry) and alkaline phosphatase activity of CRF and control chondrocyte cultures were not different. Growth responses of CRF chondrocytes were reduced (P < 0.01) compared with control chondrocytes when grown in 10% FCS and 10% normal rat serum. Under serum free conditions, growth responses of CRF chondrocytes were reduced to GH and IGF-I at concentrations of 10, 30 and 100 ng/ml, and to insulin at 100, 300 and 1,000 ng/ml compared with controls cells (P < 0.01). To show that this resistance is specific for the GH/IGF system, growth responses to fibroblast growth factor and transforming growth factor β1 were studied and showed no difference between CRF and control cells. Thus, the present study provides direct evidence of specific end-organ resistance to GH, IGF-I in CRF chondrocytes in the absence of circulating factors

    Hexagons, Kinks and Disorder in Oscillated Granular Layers

    Full text link
    Experiments on vertically oscillated granular layers in an evacuated container reveal a sequence of well-defined pattern bifurcations as the container acceleration is increased. Period doublings of the layer center of mass motion and a parametric wave instability interact to produce hexagons and more complicated patterns composed of distinct spatial domains of different relative phase separated by kinks (phase discontinuities). Above a critical acceleration, the layer becomes disordered in both space and time.Comment: 4 pages. The RevTeX file has a macro allowing various styles. The appropriate style is "myprint" which is the defaul

    Onset of fluidization in vertically shaken granular material

    Full text link
    When granular material is shaken vertically one observes convection, surface fluidization, spontaneous heap formation and other effects. There is a controversial discussion in literature whether there exists a threshold for the Froude number Γ=A0ω02/g\Gamma=A_0\omega_0^2/g below which these effects cannot be observed anymore. By means of theoretical analysis and computer simulation we find that there is no such single threshold. Instead we propose a modified criterion which coincides with critical Froude number Γc=1\Gamma_c=1 for small driving frequency ω0\omega_0.Comment: 7 pages, 5 figure

    Convective Motion in a Vibrated Granular Layer

    Full text link
    Experimental results are presented for a vertically shaken granular layer. In the range of accelerations explored, the layer develops a convective motion in the form of one or more rolls. The velocity of the grains near the wall has been measured. It grows linearly with the acceleration, then the growing rate slows down. A rescaling with the amplitude of the wall velocity and the height of the granular layer makes all data collapse in a single curve. This can provide insights on the mechanism driving the motion.Comment: 10 pages, 5 figures submitted to Phys. Rev. Let

    Studies of Mass and Size Effects in Three-Dimensional Vibrofluidized Granular Mixtures

    Full text link
    We examine the steady state properties of binary systems of driven inelastic hard spheres. The spheres, which move under the influence of gravity, are contained in a vertical cylinder with a vibrating base. We computed the trajectories of the spheres using an event-driven molecular dynamics algorithm. In the first part of the study, we chose simulation parameters that match those of experiments performed by Wildman and Parker. Various properties computed from the simulation including the density profile, granular temperature and circulation pattern are in good qualitative agreement with the experiments. We then studied the effect of varying the mass ratio and the size ratio independently while holding the other parameters constant. The mass and size ratio are shown to affect the distribution of the energy. The changes in the energy distributions affect the packing fraction and temperature of each component. The temperature of the heavier component has a non-linear dependence on the mass of the lighter component, while the temperature of the lighter component is approximately proportional to its mass. The temperature of both components is inversely dependent on the size of the smaller component.Comment: 14 Pages, 12 Figures, RevTeX

    Transitions in the Horizontal Transport of Vertically Vibrated Granular Layers

    Full text link
    Motivated by recent advances in the investigation of fluctuation-driven ratchets and flows in excited granular media, we have carried out experimental and simulational studies to explore the horizontal transport of granular particles in a vertically vibrated system whose base has a sawtooth-shaped profile. The resulting material flow exhibits novel collective behavior, both as a function of the number of layers of particles and the driving frequency; in particular, under certain conditions, increasing the layer thickness leads to a reversal of the current, while the onset of transport as a function of frequency occurs gradually in a manner reminiscent of a phase transition. Our experimental findings are interpreted here with the help of extensive, event driven Molecular Dynamics simulations. In addition to reproducing the experimental results, the simulations revealed that the current may be reversed as a function of the driving frequency as well. We also give details about the simulations so that similar numerical studies can be carried out in a more straightforward manner in the future.Comment: 12 pages, 18 figure

    Vibration-induced "thermally activated" jamming transition in granular media

    Full text link
    The quasi-static frequency response of a granular medium is measured by a forced torsion oscillator method, with forcing frequency fpf_{p} in the range 10410^{-4} Hz to 5 Hz, while weak vibrations at high-frequency fsf_{s}, in the range 50 Hz to 200 Hz, are generated by an external shaker. The intensity of vibration, Γ\Gamma , is below the fluidization limit. A loss factor peak is observed in the oscillator response as a function of Γ\Gamma or fpf_{p}. In a plot of lnfp\ln f_{p} against 1/Γ1/\Gamma , the position of the peak follows an Arrhenius-like behaviour over four orders of magnitude in fpf_{p}. The data can be described as a stochastic hopping process involving a probability factor exp(Γj/Γ)\exp(-\Gamma_{j}/\Gamma) with Γj\Gamma_{j} a fsf_{s}-dependent characteristic vibration intensity. A fsf_{s}-independent description is given by exp(τj/τ)\exp(-\tau_{j}/\tau), with τj\tau_{j} an intrinsic characteristic time, and τ=Γn/2πfs\tau =\Gamma ^{n}/2\pi f_{s}, n=0.5-0.6, an empirical control parameter with unit of time. τ\tau is seen as the effective average time during which the perturbed grains can undergo structural rearrangement. The loss factor peak appears as a crossover in the dynamic behaviour of the vibrated granular system, which, at the time-scale 1/fp 1/f_{p}, is solid-like at low Γ\Gamma, and the oscillator is jammed into the granular material, and is fluid-like at high Γ\Gamma, where the oscillator can slide viscously.Comment: Final version to appear in PR

    Coarsening of granular clusters: two types of scaling behaviors

    Full text link
    We report on an experimental study of small cluster dynamics during the coarsening process in driven granular submonolayers of 120mkm bronze particles. The techniques of electrostatic and vertical mechanical vibration were employed to excite the granular gas. We measure the scaling exponent for the evaporation of small clusters during coarsening. It was found that the surface area of small clusters S vs time t behaves as S ~ (t_0-t)^(2/3) for lower frequencies and S ~ (t_0-t) for higher frequencies. We argue that the change in the scaling exponent is related to the transition from three dimensional to two dimensional character of motion in the granular gas.Comment: 4 pages,5 figures, submitted to Phys.Rev.
    corecore