29 research outputs found

    Observation of a sudden cessation of a very-high-energy gamma-ray flare in PKS 1510-089 with H.E.S.S. and MAGIC in May 2016

    Get PDF
    The flat spectrum radio quasar (FSRQ) PKS 1510-089 is known for its complex multiwavelength behavior, and is one of only a few FSRQs detected at very high energy (VHE, E >100 GeV) -rays. VHE -ray observations with H.E.S.S. and MAGIC during late May and early June 2016 resulted in the detection of an unprecedented flare, which reveals for the first time VHE -ray intranight variability in this source. While a common variability timescale of 1.5 hr is found, there is a significant deviation near the end of the flare with a timescale of ∼ 20 min marking the cessation of the event. The peak flux is nearly two orders of magnitude above the low-level emission. For the first time, curvature is detected in the VHE -ray spectrum of PKS 1510-089, which is fully explained through absorption by the extragalactic background light. Optical R-band observations with ATOM reveal a counterpart of the -ray flare, even though the detailed flux evolution differs from the VHE lightcurve. Interestingly, a steep flux decrease is observed at the same time as the cessation of the VHE flare. In the high energy (HE, E >100 MeV) -ray band only a moderate flux increase is observed with Fermi-LAT, while the HE -ray spectrum significantly hardens up to a photon index of 1.6. A search for broad-line region (BLR) absorption features in the -ray spectrum indicates that the emission region is located outside of the BLR. Radio VLBI observations reveal a fast moving knot interacting with a standing jet feature around the time of the flare. As the standing feature is located ∼ 50 pc from the black hole, the emission region of the flare may have been located at a significant distance from the black hole. If this correlation is indeed true, VHE rays have been produced far down the jet where turbulent plasma crosses a standing shock.Accepted manuscrip

    Digital Double-Pulse Holographic Interferometry for Vibration Analysis

    No full text
    Different arrangements for double-pulsed holographic and speckle interferometry for vibration analysis will be described. Experimental results obtained with films (classical holographic interferometry) and CCD cameras (digital holographic interferometry) as storage materials are presented. In digital holography, two separate holograms of an object under test are recorded within a few microseconds using a CCD camera and are stored in a frame grabber. The phases of the two reconstructed wave fields are calculated from the complex amplitudes. The deformation is obtained from the phase difference. In the case of electronic speckle pattern interferometry (or image plane hologram), the phase can be calculated by using the sinusoid-fitting method. In the case of digital holographic interferometry, the phase is obtained by digital reconstruction of the complex amplitudes of the wave fronts. Using three directions of illumination and one direction of observation, all the information necessary for the reconstruction of the 3-dimensional deformation vector can be recorded at the same time. Applications of the method for measuring rotating objects are discussed where a derotator needs to be used

    Comparative Study of Various Endoscopes for Pulsed Digital Holographic Interferometry

    No full text
    A comparison of several endoscopes as object image carriers in pulsed digital holography is presented. Three multicore flexible fiber endoscopes of different spatial resolution and one rigid endoscope are investigated. The four endoscopes are integrated in a setup for the recording of digital holograms on a CCD camera. A double-pulsed ruby laser is used as the light source. A spatial carrier is introduced by an off-axis reference beam, which permits quantitative evaluation of the phase difference between two holograms recorded with a short time separation (5–600 μs). From reported studies it may be inferred that the quality of the phase maps so derived from digital holographic interferometry has a strong correlation to the spatial resolution of the multicore fiber used in these endoscopes. With the endoscopic technique combined with pulsed digital holography a number of useful applications (in areas such as medical endoscopy, micromechanics, and microelectronics) are envisaged for which access to the objects of interest is otherwise difficult

    Highly Sensitive Pulsed Digital Holography for Built-in-defect analysis with a laser excitation.

    No full text
    A highly sensitive method is presented for noninvasive defect analysis on thin structures with a Q-switched double-pulsed ruby laser with frequency doubling (347 nm). In our research we feature an all-optical arrangement, where a focused laser pulse derived from the same ruby laser (694 nm) acts as a built-in synchronous excitation source for digital holographic interferometry. The recordings are made with a CCD camera for capturing two holograms (two states of the specimen) corresponding to the two UV laser pulses with a short time separation (10–50 μs). Subtraction of the phase distribution in two digital holograms gives a fringe phase map that shows the change in deformation of the specimen between the recordings. The advantage of the proposed method is two fold. First, the use of a shorter wavelength results in a higher sensitivity. Second, owing to the induced synchronous built-in optical excitation, the specimen is not subjected to any external physical excitation devices. Experimental results are presented on identification and evaluation of defects in thin metal sheets

    Institut fuer Technische Optik, Universitaet Stuttgart. Jahresbericht 1994

    No full text
    Available from TIB Hannover: RO 43(21) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman

    Institut fuer Technische Optik, Universitaet Stuttgart. Jahresbericht 1995

    No full text
    Available from TIB Hannover: RO 43(23) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman

    Mikroskopische lasergestuetzte Messwerterfassung zur Mikro- und Makrostrukturanalyse

    No full text
    Confocal microscopy and structurated illumination have been applied to the characterization of surfaces with a roughness between 50 nm and 10 #mu#m. Laboratory devices for microscopic and macroscopic topometry have been built, and their practicability has been proved. Confocal microscopy using a Nipkow disk is especially suited for the analysis of fine structures at a lateral resolution of <1 #mu#m. Structurated illumination can be used for rapid macrostructure analysis, e.g. in opthalmology. Data acquisition could be reduced to 80 ms maintaining the high resolution and robustness of the method. An assessory for a 3D microscope developed for both microscopic and macroscopic topometry makes quantitative measurements at real surfaces possible. (WEN)SIGLEAvailable from TIB Hannover: F97B163+a / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekBundesministerium fuer Bildung, Wissenschaft, Forschung und Technologie, Bonn (Germany)DEGerman
    corecore