21 research outputs found

    Neutral H density at the termination shock: a consolidation of recent results

    Full text link
    We discuss a consolidation of determinations of the density of neutral interstellar H at the nose of the termination shock carried out with the use of various data sets, techniques, and modeling approaches. In particular, we focus on the determination of this density based on observations of H pickup ions on Ulysses during its aphelion passage through the ecliptic plane. We discuss in greater detail a novel method of determination of the density from these measurements and review the results from its application to actual data. The H density at TS derived from this analysis is equal to 0.087 \pm 0.022 cm-3, and when all relevant determinations are taken into account, the consolidated density is obtained at 0.09 \pm 0.022 cm-3. The density of H in CHISM based on literature values of filtration factor is then calculated at 0.16 \pm 0.04 cm-3.Comment: Submitted to Space Science Review

    Coulomb gap in one-dimensional disordered electronic systems

    Full text link
    We study a one-dimensional system of spinless electrons in the presence of a long-range Coulomb interaction (LRCI) and a random chemical potential at each site. We first present a Tomonaga-Luttinger liquid (TLL) description of the system. We use the bosonization technique followed by the replica trick to average over the quenched randomness. An expression for the localization length of the system is then obtained using the renormalization group method and also a physical argument. We then find the density of states for different values of the energy; we get different expressions depending on whether the energy is larger than or smaller than the inverse of the localization length. We work in the limit of weak disorder where the localization length is very large; at that length scale, the LRCI has the effect of reducing the interaction parameter K of the TLL to a value much smaller than the noninteracting value of unity.Comment: Revtex, 6 pages, no figures; discussions have been expanded in several place

    Coulomb Gaps in One-Dimensional Spin-Polarized Electron Systems

    Full text link
    We investigate the density of states (DOS) near the Fermi energy of one-dimensional spin-polarized electron systems in the quantum regime where the localization length is comparable to or larger than the inter-particle distance. The Wigner lattice gap of such a system, in the presence of weak disorder, can occur precisely at the Fermi energy, coinciding with the Coulomb gap in position. The interplay between the two is investigated by treating the long-range Coulomb interaction and the random disorder potential in a self-consistent Hartree-Fock approximation. The DOS near the Fermi energy is found to be well described by a power law whose exponent decreases with increasing disorder strength.Comment: 4 pages, revtex, 4 figures, to be published in Phys. Rev. B as a Rapid Communicatio

    Influence of fast interstellar gas flow on dynamics of dust grains

    Full text link
    The orbital evolution of a dust particle under the action of a fast interstellar gas flow is investigated. The secular time derivatives of Keplerian orbital elements and the radial, transversal, and normal components of the gas flow velocity vector at the pericentre of the particle's orbit are derived. The secular time derivatives of the semi-major axis, eccentricity, and of the radial, transversal, and normal components of the gas flow velocity vector at the pericentre of the particle's orbit constitute a system of equations that determines the evolution of the particle's orbit in space with respect to the gas flow velocity vector. This system of differential equations can be easily solved analytically. From the solution of the system we found the evolution of the Keplerian orbital elements in the special case when the orbital elements are determined with respect to a plane perpendicular to the gas flow velocity vector. Transformation of the Keplerian orbital elements determined for this special case into orbital elements determined with respect to an arbitrary oriented plane is presented. The orbital elements of the dust particle change periodically with a constant oscillation period or remain constant. Planar, perpendicular and stationary solutions are discussed. The applicability of this solution in the Solar system is also investigated. We consider icy particles with radii from 1 to 10 micrometers. The presented solution is valid for these particles in orbits with semi-major axes from 200 to 3000 AU and eccentricities smaller than 0.8, approximately. The oscillation periods for these orbits range from 10^5 to 2 x 10^6 years, approximately.Comment: 22 pages, 3 figures; Accepted for publication in Celestial Mechanics and Dynamical Astronom

    Charge Transfer Reactions

    Full text link

    The Galactic Environment of the Sun: Interstellar Material Inside and Outside of the Heliosphere

    Full text link
    corecore