22 research outputs found
Relativistic wave equations for interacting massive particles with arbitrary half-intreger spins
New formulation of relativistic wave equations (RWE) for massive particles
with arbitrary half-integer spins s interacting with external electromagnetic
fields are proposed. They are based on wave functions which are irreducible
tensors of rank n=s-\frac12$) antisymmetric w.r.t. n pairs of indices,
whose components are bispinors. The form of RWE is straightforward and free of
inconsistencies associated with the other approaches to equations describing
interacting higher spin particles
Developing a predictive modelling capacity for a climate change-vulnerable blanket bog habitat: Assessing 1961-1990 baseline relationships
Aim: Understanding the spatial distribution of high priority habitats and
developing predictive models using climate and environmental variables to
replicate these distributions are desirable conservation goals. The aim of this
study was to model and elucidate the contributions of climate and topography to
the distribution of a priority blanket bog habitat in Ireland, and to examine how
this might inform the development of a climate change predictive capacity for
peat-lands in Ireland.
Methods: Ten climatic and two topographic variables were recorded for grid
cells with a spatial resolution of 1010 km, covering 87% of the mainland
land surface of Ireland. Presence-absence data were matched to these variables
and generalised linear models (GLMs) fitted to identify the main climatic and
terrain predictor variables for occurrence of the habitat. Candidate predictor
variables were screened for collinearity, and the accuracy of the final fitted GLM
was evaluated using fourfold cross-validation based on the area under the curve
(AUC) derived from a receiver operating characteristic (ROC) plot. The GLM
predicted habitat occurrence probability maps were mapped against the actual
distributions using GIS techniques.
Results: Despite the apparent parsimony of the initial GLM using only climatic
variables, further testing indicated collinearity among temperature and precipitation
variables for example. Subsequent elimination of the collinear variables and
inclusion of elevation data produced an excellent performance based on the AUC
scores of the final GLM. Mean annual temperature and total mean annual
precipitation in combination with elevation range were the most powerful
explanatory variable group among those explored for the presence of blanket
bog habitat.
Main conclusions: The results confirm that this habitat distribution in general
can be modelled well using the non-collinear climatic and terrain variables tested
at the grid resolution used. Mapping the GLM-predicted distribution to the
observed distribution produced useful results in replicating the projected
occurrence of the habitat distribution over an extensive area. The methods
developed will usefully inform future climate change predictive modelling for
Irelan
TRY plant trait database â enhanced coverage and open access
Plant traitsâthe morphological, anatomical, physiological, biochemical and phenological characteristics of plantsâdetermine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of traitâbased plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traitsâalmost complete coverage for âplant growth formâ. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and traitâenvironmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
View of Boston, Massachusetts 1880.
Perspective map not drawn to scale.Bird's-eye-view.LC Panoramic maps (2nd ed.), 278Indexed for points of interest
Albany, New York 1879.
Perspective map not drawn to scale.Bird's-eye-view.LC Panoramic maps (2nd ed.), 534Includes illus. and index to points of interest
View of Rochester, New York 1880.
Perspective map not drawn to scale.Bird's-eye-view.LC Panoramic maps (2nd ed.), 62