188 research outputs found
Nondestructive measurements of implant-bone interface shear modulus and effects of implant geometry in pull-out tests
Push-out and pull-out tests are used for destructive evaluation of implant-bone interface strength. Because nondestructive mechanical tests would allow maintenance of an intact interface for subsequent morphological study, we developed such a test to determine the shear modulus of the interface by measuring the shear deformation of a thin layer adjacent to the implant. A polyurethane foam model was used to test the experimental setup on a group of nine cylindrical implants with three different lengths (15-48 mm) and three different diameters (5-9.7 mm). The shear modulus of the interface, as calculated from the pull-out test, was validated against the shear modulus of the foam derived from tensile tests. The two values of shear modulus were well correlated (R2 = 0.8, p < 0.001), thus encouraging further application of the setup for tests of implant-bone interface mechanics. In addition, we also examined the effects of implant length and diameter. The length of the implants had a significant influence on the interface shear modulus (p < 0.05), indicating that comparisons of the variable should only be made of implants with the same length. The length and diameter of the implants were not critical parameters for the ultimate fixation strength
Parallel plate model for trabecular bone exhibits volume fraction-dependent bias
Unbiased stereological methods were used in conjunction with microcomputed tomographic (micro-CT) scans of human and animal bone to investigate errors created when the parallel plate model was used to calculate morphometric parameters. Bone samples were obtained from the human proximal tibia, canine distal femur, rat tail, and pig spine and scanned in a micro-CT scanner. Trabecular thickness, trabecular spacing, and trabecular number were calculated using the parallel plate model. Direct thickness, and spacing and connectivity density were calculated using unbiased three-dimensional methods. Both thickness and spacing calculated using the plate model were well correlated to the direct three-dimensional measures (r(2) = 0. 77-0.92). The correlation between trabecular number and connectivity density varied greatly (r(2) = 0.41-0.94). Whereas trabecular thickness was consistently underestimated using the plate model, trabecular spacing was underestimated at low volume fractions and overestimated at high volume fractions. Use of the plate model resulted in a volume-dependent bias in measures of thickness and spacing (p < 0.001). This was a result of the fact that samples of low volume fraction were much more "rod-like" than those of the higher volume fraction. Our findings indicate that the plate model provides biased results, especially when populations with different volume fractions are compared. Therefore, we recommend direct thickness measures when three-dimensional data sets are available
Clinical mastitis in cows treated with sometribove (recombinant bovine somatotropin) and its relationship to milk yield.
Effect of sometribove (methionyl bovine somatotropin) on mastitis in 15 full lactation trials (914 cows) in Europe and the US and 70 short-term studies (2697 cows) in eight countries was investigated. In full lactation studies, sometribove (500 mg/2 wk) was given for 252 d, commencing 60 d postpartum. Although herds varied considerably, incidence of clinical mastitis within a herd was similar for cows receiving control and sometribove treatments. Relative risk analyses indicated no treatment effect, and percentage of mastitis during treatment was similar for control and sometribove groups. A positive linear relationship existed between peak milk yield and mastitis incidence (percentage of cows contracting mastitis or cases per 100 cow days); sometribove treatment did not alter this relationship. Increases in mastitis related to milk yield increase from sometribove or related to genetic selection were similar. When expressed per unit of milk, mastitis incidence declined slightly as milk yield increased; this relationship was not altered by sometribove. No effect on clinical mastitis was observed in 70 commercial herds utilizing sometribove for 84 d. However, effects were significant for stage of lactation and milk yield. Overall, studies represented a wide range of research and commercial situations demonstrating that sometribove had no effect on incidence of clinical mastitis during the lactation of treatment. Furthermore, sometribove did not alter typical relationships between milk yield or herd factors and incidence of clinical mastitis
The Physics of Star Cluster Formation and Evolution
© 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00689-4.Star clusters form in dense, hierarchically collapsing gas clouds. Bulk kinetic energy is transformed to turbulence with stars forming from cores fed by filaments. In the most compact regions, stellar feedback is least effective in removing the gas and stars may form very efficiently. These are also the regions where, in high-mass clusters, ejecta from some kind of high-mass stars are effectively captured during the formation phase of some of the low mass stars and effectively channeled into the latter to form multiple populations. Star formation epochs in star clusters are generally set by gas flows that determine the abundance of gas in the cluster. We argue that there is likely only one star formation epoch after which clusters remain essentially clear of gas by cluster winds. Collisional dynamics is important in this phase leading to core collapse, expansion and eventual dispersion of every cluster. We review recent developments in the field with a focus on theoretical work.Peer reviewe
Novel genetic loci associated with hippocampal volume
The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness
Analysis of shared heritability in common disorders of the brain
ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders
Measurement of the cross section of high transverse momentum ZâbbÌ production in protonâproton collisions at âs = 8 TeV with the ATLAS detector
This Letter reports the observation of a high transverse momentum ZâbbÌ signal in protonâproton collisions at âs=8 TeV and the measurement of its production cross section. The data analysed were collected in 2012 with the ATLAS detector at the LHC and correspond to an integrated luminosity of 19.5 fbâÂč. The ZâbbÌ decay is reconstructed from a pair of b -tagged jets, clustered with the anti-ktkt jet algorithm with R=0.4R=0.4, that have low angular separation and form a dijet with pT>200 GeVpT>200 GeV. The signal yield is extracted from a fit to the dijet invariant mass distribution, with the dominant, multi-jet background mass shape estimated by employing a fully data-driven technique that reduces the dependence of the analysis on simulation. The fiducial cross section is determined to be
ÏZâbbÂŻfid=2.02±0.20 (stat.) ±0.25 (syst.)±0.06 (lumi.) pb=2.02±0.33 pb,
in good agreement with next-to-leading-order theoretical predictions
Measurement of the branching ratio Î(Îbâ° â Ï(2S)Î0)/Î(Îbâ° â J/ÏÎ0) with the ATLAS detector
An observation of the decay and
a comparison of its branching fraction with that of the decay has been made with the ATLAS detector in
proton--proton collisions at TeV at the LHC using an integrated
luminosity of fb. The and mesons are
reconstructed in their decays to a muon pair, while the decay is exploited for the baryon reconstruction. The
baryons are reconstructed with transverse momentum GeV and pseudorapidity . The measured branching ratio of
the and decays is , lower than the expectation from the
covariant quark model.Comment: 12 pages plus author list (28 pages total), 5 figures, 1 table,
published on Physics Letters B 751 (2015) 63-80. All figures are available at
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/BPHY-2013-08
Measurement of the View the tt production cross-section using eÎŒ events with b-tagged jets in pp collisions at âs = 13 TeV with the ATLAS detector
This paper describes a measurement of the inclusive top quark pair production cross-section (ÏttÂŻ) with a data sample of 3.2 fbâ1 of protonâproton collisions at a centre-of-mass energy of âs = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electronâmuon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously ÏttÂŻ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be:
ÏttÂŻ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb,
where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented
- âŠ