16 research outputs found

    Distributed Prospective Memory: An approach to understanding how nurses remember tasks

    No full text
    People’s ability to execute future intentions, or their prospective memory (PM), is a critical aspect of cognitive work because failures can have adverse outcomes. Most research to date deals with unaided prospective memory performance outside a healthcare context. We report results from a field study investigating PM performance of intensive care nurses. Concepts from distributed cognition help to identify how nurses use physical properties of their working environment to manage PM demands. Results show that (1) PM demands can be classified using a taxonomy from aviation and (2) nurses are supported by and use properties of the environment to manage PM demands. Focusing on distributed support for prospective memory lets us study prospective memory in rich work contexts. The results inform health information system and device design and professional education

    Validation of centrifugation as a countermeasure for otolith deconditioning during spaceflight : preliminary data of the ESA SPIN study

    No full text
    In the framework of further space exploration, countermeasures to combat the drawbacks of human space flights are essential. The present study focuses on the influence of microgravity on the otolith-ocular reflex and aims to test the hypothesis of artificial gravity being an adequate countermeasure for the deconditioning of the aforementioned reflex. The so-called SPIN study, commissioned by the European Space Agency, can be considered as a control experiment in the broad sense for the Neurolab mission (STS-90) during which 4 crewmembers of the space shuttle were subjected to in-flight centrifugation on the visual and vestibular investigation system (VVIS). After their nearly 16-day mission, they did not suffer from orthostatic intolerance and spatial disorientation. In addition, the relevant parameters of the otolith-ocular interaction remained unaffected. For this study cosmonauts from a long duration stay in the International Space Station that were not centrifuged in-flight were tested on the VVIS (1 g centripetal interaural acceleration) on 6 different days. Three measurements were taken about 1.5-2 months prior to launch and 3 were taken at 1, 4 and 9 days after return from space. Ocular counter-rolling was measured before, during and after rotation on the VVIS using infrared video goggles and compared pair wise using Friedman tests. The perception of verticality was monitored using an ultrasound system for perceptual evaluation. The preliminary results of 4 cosmonauts showed a surprisingly large inter-individual variability of the measurements. Although OCR and perception of verticality appeared to be influenced overall by the exposure to microgravity, the wide variability among the cosmonauts obscured any statistical significance, in particular due to one cosmonauts being inconsistent with the other 3. Despite the specificity of the tests under normal conditions, the diverse response to spaceflight of our subjects exposes the complexity of the peripheral and central neural adaptive processes

    Global-scale tidal variability during the PSMOS campaign of June-August 1999: interaction with planetary waves

    No full text
    During the PSMOS Global-scale tidal variability experiment campaign of June 1-August 31, 1999, a network of radars made measurements of winds, waves and tides in the mesosphere/lower-thermosphere region over a wide range of latitudes. Clear evidence was found that fluctuations in tidal amplitudes occur on a global scale in both hemispheres, and that at least some of these fluctuations are periodic in nature. Modulation of the amplitude of the 12 h tide was particularly evident at periods of 10 and 16 days, suggesting a non-linear interaction with planetary waves of those periods to be responsible. In selected cases, the secondary waves predicted from non-linear theory could be identified and their zonal wave numbers determined. In some, but not all, cases the longitudinal structure of the secondary waves supports the theory of planetary-wave/tidal interaction being responsible for the observed tidal modulation. It was noted also that beating between a 12.4-lunar and the solar tide could produce a near 16-day modulation of the 12 h tide amplitude that is frequently observed in late summer
    corecore