6 research outputs found

    On the exact gravitational lens equation in spherically symmetric and static spacetimes

    Full text link
    Lensing in a spherically symmetric and static spacetime is considered, based on the lightlike geodesic equation without approximations. After fixing two radius values r_O and r_S, lensing for an observation event somewhere at r_O and static light sources distributed at r_S is coded in a lens equation that is explicitly given in terms of integrals over the metric coefficients. The lens equation relates two angle variables and can be easily plotted if the metric coefficients have been specified; this allows to visualize in a convenient way all relevant lensing properties, giving image positions, apparent brightnesses, image distortions, etc. Two examples are treated: Lensing by a Barriola-Vilenkin monopole and lensing by an Ellis wormhole.Comment: REVTEX, 11 pages, 12 eps-figures, figures partly improved, minor revision

    Morris-Thorne wormholes with a cosmological constant

    Get PDF
    First, the ideas introduced in the wormhole research field since the work of Morris and Thorne are briefly reviewed, namely, the issues of energy conditions, wormhole construction, stability, time machines and astrophysical signatures. Then, spherically symmetric and static traversable Morris-Thorne wormholes in the presence of a generic cosmological constant are analyzed. A matching of an interior solution to the unique exterior vacuum solution is done using directly the Einstein equations. The structure as well as several physical properties and characteristics of traversable wormholes due to the effects of the cosmological term are studied. Interesting equations appear in the process of matching. For instance, one finds that for asymptotically flat and anti-de Sitter spacetimes the surface tangential pressure of the thin-shell, at the boundary of the interior and exterior solutions, is always strictly positive, whereas for de Sitter spacetime it can take either sign as one could expect, being negative (tension) for relatively high cosmological constant and high wormhole radius, positive for relatively high mass and small wormhole radius, and zero in-between. Finally, some specific solutions with generic cosmological constant, based on the Morris-Thorne solutions, are provided.Comment: latex, 49 pages, 8 figures. Expanded version of the paper published in Physical Review
    corecore