172 research outputs found
Magneto-Acoustic Wave Oscillations in Solar Spicules
Some observations suggest that solar spicules show small amplitude and high
frequency oscillations of magneto-acoustic waves, which arise from photospheric
granular forcing. We apply the method of MHD seismology to determine the period
of kink waves. For this purposes, the oscillations of a magnetic cylinder
embedded in a field-free environment is investigated. Finally, diagnostic
diagrams displaying the oscillatory period in terms of some equilibrium
parameters are provided to allow a comparison between theoretical results and
those coming from observations.Comment: 10 pages, 4 fig
Three Dimensional MHD Wave Propagation and Conversion to Alfven Waves near the Solar Surface. I. Direct Numerical Solution
The efficacy of fast/slow MHD mode conversion in the surface layers of
sunspots has been demonstrated over recent years using a number of modelling
techniques, including ray theory, perturbation theory, differential eigensystem
analysis, and direct numerical simulation. These show that significant energy
may be transferred between the fast and slow modes in the neighbourhood of the
equipartition layer where the Alfven and sound speeds coincide. However, most
of the models so far have been two dimensional. In three dimensions the Alfven
wave may couple to the magneto-acoustic waves with important implications for
energy loss from helioseismic modes and for oscillations in the atmosphere
above the spot. In this paper, we carry out a numerical ``scattering
experiment'', placing an acoustic driver 4 Mm below the solar surface and
monitoring the acoustic and Alfvenic wave energy flux high in an isothermal
atmosphere placed above it. These calculations indeed show that energy
conversion to upward travelling Alfven waves can be substantial, in many cases
exceeding loss to slow (acoustic) waves. Typically, at penumbral magnetic field
strengths, the strongest Alfven fluxes are produced when the field is inclined
30-40 degrees from the vertical, with the vertical plane of wave propagation
offset from the vertical plane containing field lines by some 60-80 degrees.Comment: Accepted for the HELAS II/ SOHO 19/ GONG 2007 Topical Issue of Solar
Physic
On the multiplicity of the O-star Cyg OB2 #8A and its contribution to the gamma-ray source 3EG J2033+4118
We present the results of an intensive spectroscopic campaign in the optical
waveband revealing that Cyg OB2 #8A is an O6 + O5.5 binary system with a period
of about 21.9 d. Cyg OB2 #8A is a bright X-ray source, as well as a non-thermal
radio emitter. We discuss the binarity of this star in the framework of a
campaign devoted to the study of non-thermal emitters, from the radio waveband
to gamma-rays. In this context, we attribute the non-thermal radio emission
from this star to a population of relativistic electrons, accelerated by the
shock of the wind-wind collision. These relativistic electrons could also be
responsible for a putative gamma-ray emission through inverse Compton
scattering of photospheric UV photons, thus contributing to the yet
unidentified EGRET source 3EG J2033+4118.Comment: 8 pages, 4 figures, conference on "The Multiwavelength Approach to
Gamma-Ray Sources", to appear in Ap&S
Differential rotation of nonlinear r-modes
Differential rotation of r-modes is investigated within the nonlinear theory
up to second order in the mode amplitude in the case of a slowly-rotating,
Newtonian, barotropic, perfect-fluid star. We find a nonlinear extension of the
linear r-mode, which represents differential rotation that produces large scale
drifts of fluid elements along stellar latitudes. This solution includes a
piece induced by first-order quantities and another one which is a pure
second-order effect. Since the latter is stratified on cylinders, it cannot
cancel differential rotation induced by first-order quantities, which is not
stratified on cylinders. It is shown that, unlikely the situation in the
linearized theory, r-modes do not preserve vorticity of fluid elements at
second-order. It is also shown that the physical angular momentum and energy of
the perturbation are, in general, different from the corresponding canonical
quantities.Comment: 9 pages, revtex4; section III revised, comments added in Introduction
and Conclusions, references updated; to appear in Phys. Rev.
Gravitational waves from rapidly rotating neutron stars
Rapidly rotating neutron stars in Low Mass X-ray Binaries have been proposed
as an interesting source of gravitational waves. In this chapter we present
estimates of the gravitational wave emission for various scenarios, given the
(electromagnetically) observed characteristics of these systems. First of all
we focus on the r-mode instability and show that a 'minimal' neutron star model
(which does not incorporate exotica in the core, dynamically important magnetic
fields or superfluid degrees of freedom), is not consistent with observations.
We then present estimates of both thermally induced and magnetically sustained
mountains in the crust. In general magnetic mountains are likely to be
detectable only if the buried magnetic field of the star is of the order of
G. In the thermal mountain case we find that gravitational
wave emission from persistent systems may be detected by ground based
interferometers. Finally we re-asses the idea that gravitational wave emission
may be balancing the accretion torque in these systems, and show that in most
cases the disc/magnetosphere interaction can account for the observed spin
periods.Comment: To appear in 'Gravitational Waves Astrophysics: 3rd Session of the
Sant Cugat Forum on Astrophysics, 2014', Editor: Carlos F. Sopuert
Theory of magnetically powered jets
The magnetic theory for the production of jets by accreting objects is
reviewed with emphasis on outstanding problem areas. An effort is made to show
the connections behind the occasionally diverging nomenclature in the
literature, to contrast the different points of view about basic mechanisms,
and to highlight concepts for interpreting the results of numerical
simulations. The role of dissipation of magnetic energy in accelerating the
flow is discussed, and its importance for explaining high Lorentz factors. The
collimation of jets to the observed narrow angles is discussed, including a
critical discussion of the role of `hoop stress'. The transition between disk
and outflow is one of the least understood parts of the magnetic theory; its
role in setting the mass flux in the wind, in possible modulations of the mass
flux, and the uncertainties in treating it realistically are discussed. Current
views on most of these problems are still strongly influenced by the
restriction to 2 dimensions (axisymmetry) in previous analytical and numerical
work; 3-D effects likely to be important are suggested. An interesting problem
area is the nature and origin of the strong, preferably highly ordered magnetic
fields known to work best for jet production. The observational evidence for
such fields and their behavior in numerical simulations is discussed. I argue
that the presence or absence of such fields may well be the `second parameter'
governing not only the presence of jets but also the X-ray spectra and timing
behavior of X-ray binaries.Comment: 29 pages. Publication delays offered the opportunity for further
corrections, an expansion of sect 4.2, and one more Fig. To appear in
Belloni, T. (ed.): The Jet Paradigm - From Microquasars to Quasars, Lect.
Notes Phys. 794 (2009
Nonlinear r-Modes in Neutron Stars: Instability of an unstable mode
We study the dynamical evolution of a large amplitude r-mode by numerical
simulations. R-modes in neutron stars are unstable growing modes, driven by
gravitational radiation reaction. In these simulations, r-modes of amplitude
unity or above are destroyed by a catastrophic decay: A large amplitude r-mode
gradually leaks energy into other fluid modes, which in turn act nonlinearly
with the r-mode, leading to the onset of the rapid decay. As a result the
r-mode suddenly breaks down into a differentially rotating configuration. The
catastrophic decay does not appear to be related to shock waves at the star's
surface. The limit it imposes on the r-mode amplitude is significantly smaller
than that suggested by previous fully nonlinear numerical simulations.Comment: Published in Phys. Rev. D Rapid Comm. 66, 041303(R) (2002
- …