478 research outputs found

    Solitons in the noisy Burgers equation

    Full text link
    We investigate numerically the coupled diffusion-advective type field equations originating from the canonical phase space approach to the noisy Burgers equation or the equivalent Kardar-Parisi-Zhang equation in one spatial dimension. The equations support stable right hand and left hand solitons and in the low viscosity limit a long-lived soliton pair excitation. We find that two identical pair excitations scatter transparently subject to a size dependent phase shift and that identical solitons scatter on a static soliton transparently without a phase shift. The soliton pair excitation and the scattering configurations are interpreted in terms of growing step and nucleation events in the interface growth profile. In the asymmetrical case the soliton scattering modes are unstable presumably toward multi soliton production and extended diffusive modes, signalling the general non-integrability of the coupled field equations. Finally, we have shown that growing steps perform anomalous random walk with dynamic exponent z=3/2 and that the nucleation of a tip is stochastically suppressed with respect to plateau formation.Comment: 11 pages Revtex file, including 15 postscript-figure

    A Survey on Evaluating and Realizing IS/IT Benefits in Taiwanese B2BEC Companies

    Get PDF
    A number of issues have emerged from the analysis of the data collected via a survey conducted in Taiwanese B2BEC companies. The results show relatively high usage of IS/IT investment evaluation and benefits realization methodologies, and yet, these methodologies were generally not used effectively within the responding organizations. Most of these organizations were not yet mature in terms of their IT. However, there was a clear association between level of IT maturity and both wide and effective use of methodologies for IS/IT investment evaluation and benefits management

    Correlations, soliton modes, and non-Hermitian linear mode transmutation in the 1D noisy Burgers equation

    Full text link
    Using the previously developed canonical phase space approach applied to the noisy Burgers equation in one dimension, we discuss in detail the growth morphology in terms of nonlinear soliton modes and superimposed linear modes. We moreover analyze the non-Hermitian character of the linear mode spectrum and the associated dynamical pinning and mode transmutation from diffusive to propagating behavior induced by the solitons. We discuss the anomalous diffusion of growth modes, switching and pathways, correlations in the multi-soliton sector, and in detail the correlations and scaling properties in the two-soliton sector.Comment: 50 pages, 15 figures, revtex4 fil

    Probing Kaluza-Klein Dark Matter with Neutrino Telescopes

    Get PDF
    In models in which all of the Standard Model fields live in extra universal dimensions, the lightest Kaluza-Klein (KK) particle can be stable. Calculations of the one-loop radiative corrections to the masses of the KK modes suggest that the identity of the lightest KK particle (LKP) is mostly the first KK excitation of the hypercharge gauge boson. This LKP is a viable dark matter candidate with an ideal present-day relic abundance if its mass is moderately large, between 600 to 1200 GeV. Such weakly interacting dark matter particles are expected to become gravitationally trapped in large bodies, such as the Sun, and annihilate into neutrinos or other particles that decay into neutrinos. We calculate the annihilation rate, neutrino flux and the resulting event rate in present and future neutrino telescopes. The relatively large mass implies that the neutrino energy spectrum is expected to be well above the energy threshold of AMANDA and IceCube. We find that the event rate in IceCube is between a few to tens of events per year.Comment: 13 pages, 3 figures, LaTeX; typos fixed, version to appear in PR

    Constraints on the SU(3) Electroweak Model

    Full text link
    We consider a recent proposal by Dimopoulos and Kaplan to embed the electroweak SU(2)_L X U(1)_Y into a larger group SU(3)_W X SU(2) X U(1) at a scale above a TeV. This idea is motivated by the prediction for the weak mixing angle sin^2 theta_W = 1/4, which naturally appears in these models so long as the gauge couplings of the high energy SU(2) and U(1) groups are moderately large. The extended gauge dynamics results in new effective operators that contribute to four-fermion interactions and Z pole observables. We calculate the corrections to these electroweak precision observables and carry out a global fit of the new physics to the data. For SU(2) and U(1) gauge couplings larger than 1, we find that the 95% C.L. lower bound on the matching (heavy gauge boson mass) scale is 11 TeV. We comment on the fine-tuning of the high energy gauge couplings needed to allow matching scales above our bounds. The remnants of SU(3)_W breaking include multi-TeV SU(2)_L doublets with electric charge (+-2,+-1). The lightest charged gauge boson is stable, leading to cosmological difficulties.Comment: 17 pages, LaTeX, 4 figures embedded, uses JHEP.cl

    Assessing threats to shallow groundwater quality from soil pollutants in Glasgow, UK: development of a new screening tool

    Get PDF
    A new GIS-based screening tool to assess threats to shallow groundwater quality has been trialled in Glasgow, UK. The GRoundwater And Soil Pollutants (GRASP) tool is based on a British Standard method for assessing the threat from potential leaching of metal pollutants in unsaturated soil/superficial materials to shallow groundwater, using data on soil and Quaternary deposit properties, climate and depth to groundwater. GRASP breaks new ground by also incorporating a new Glasgow-wide soil chemistry dataset. GRASP considers eight metals, including chromium, lead and nickel at 1622 soil sample locations. The final output is a map to aid urban management, which highlights areas where shallow groundwater quality may be at risk from current and future surface pollutants. The tool indicated that 13% of soil sample sites in Glasgow present a very high potential threat to groundwater quality, due largely to shallow groundwater depths and high soil metal concentrations. Initial attempts to validate GRASP revealed partial spatial coincidence between the GRASP threat ranks (low, moderate, high and very high) and groundwater chemistry, with statistical correlation between areas of high soil and groundwater metal concentrations for both Cr and Cu (r2>0.152; P<0.05). Validation was hampered by a lack of, and inconsistency in, existing groundwater chemistry data. To address this, standardised subsurface data collection networks have been trialled recently in Glasgow. It is recommended that, once available, new groundwater depth and chemistry information from these networks is used to validate the GRASP model further

    The Minimal Supersymmetric Fat Higgs Model

    Get PDF
    We present a calculable supersymmetric theory of a composite ``fat'' Higgs boson. Electroweak symmetry is broken dynamically through a new gauge interaction that becomes strong at an intermediate scale. The Higgs mass can easily be 200-450 GeV along with the superpartner masses, solving the supersymmetric little hierarchy problem. We explicitly verify that the model is consistent with precision electroweak data without fine-tuning. Gauge coupling unification can be maintained despite the inherently strong dynamics involved in electroweak symmetry breaking. Supersymmetrizing the Standard Model therefore does not imply a light Higgs mass, contrary to the lore in the literature. The Higgs sector of the minimal Fat Higgs model has a mass spectrum that is distinctly different from the Minimal Supersymmetric Standard Model.Comment: 13 pages, 5 figures, REVTe

    Indirect Dark Matter Detection from Dwarf Satellites: Joint Expectations from Astrophysics and Supersymmetry

    Get PDF
    We present a general methodology for determining the gamma-ray flux from annihilation of dark matter particles in Milky Way satellite galaxies, focusing on two promising satellites as examples: Segue 1 and Draco. We use the SuperBayeS code to explore the best-fitting regions of the Constrained Minimal Supersymmetric Standard Model (CMSSM) parameter space, and an independent MCMC analysis of the dark matter halo properties of the satellites using published radial velocities. We present a formalism for determining the boost from halo substructure in these galaxies and show that its value depends strongly on the extrapolation of the concentration-mass (c(M)) relation for CDM subhalos down to the minimum possible mass. We show that the preferred region for this minimum halo mass within the CMSSM with neutralino dark matter is ~10^-9-10^-6 solar masses. For the boost model where the observed power-law c(M) relation is extrapolated down to the minimum halo mass we find average boosts of about 20, while the Bullock et al (2001) c(M) model results in boosts of order unity. We estimate that for the power-law c(M) boost model and photon energies greater than a GeV, the Fermi space-telescope has about 20% chance of detecting a dark matter annihilation signal from Draco with signal-to-noise greater than 3 after about 5 years of observation

    Electroweak Symmetry Breaking via UV Insensitive Anomaly Mediation

    Full text link
    Anomaly mediation solves the supersymmetric flavor and CP problems. This is because the superconformal anomaly dictates that supersymmetry breaking is transmitted through nearly flavor-blind infrared physics that is highly predictive and UV insensitive. Slepton mass squareds, however, are predicted to be negative. This can be solved by adding D-terms for U(1)_Y and U(1)_{B-L} while retaining the UV insensitivity. In this paper we consider electroweak symmetry breaking via UV insensitive anomaly mediation in several models. For the MSSM we find a stable vacuum when tanbeta < 1, but in this region the top Yukawa coupling blows up only slightly above the supersymmetry breaking scale. For the NMSSM, we find a stable electroweak breaking vacuum but with a chargino that is too light. Replacing the cubic singlet term in the NMSSM superpotential with a term linear in the singlet we find a stable vacuum and viable spectrum. Most of the parameter region with correct vacua requires a large superpotential coupling, precisely what is expected in the ``Fat Higgs'' model in which the superpotential is generated dynamically. We have therefore found the first viable UV complete, UV insensitive supersymmetry breaking model that solves the flavor and CP problems automatically: the Fat Higgs model with UV insensitive anomaly mediation. Moreover, the cosmological gravitino problem is naturally solved, opening up the possibility of realistic thermal leptogenesis.Comment: 27 pages, 3 figures, 1 tabl

    Molecular velocity auto-correlation of simple liquids observed by NMR MGSE method

    Full text link
    The velocity auto-correlation spectra of simple liquids obtained by the NMR method of modulated gradient spin echo show features in the low frequency range up to a few kHz, which can be explained reasonably well by a t3/2t^{-3/2} long time tail decay only for non-polar liquid toluene, while the spectra of polar liquids, such as ethanol, water and glycerol, are more congruent with the model of diffusion of particles temporarily trapped in potential wells created by their neighbors. As the method provides the spectrum averaged over ensemble of particle trajectories, the initial non-exponential decay of spin echoes is attributed to a spatial heterogeneity of molecular motion in a bulk of liquid, reflected in distribution of the echo decays for short trajectories. While at longer time intervals, and thus with longer trajectories, heterogeneity is averaged out, giving rise to a spectrum which is explained as a combination of molecular self-diffusion and eddy diffusion within the vortexes of hydrodynamic fluctuations.Comment: 8 pages, 6 figur
    corecore