24 research outputs found

    Nano-structured Exchange-spring Hard Magnetic Thin Films

    Get PDF
    AbstractIn exchange coupled nano-composite magnets, the length scale of the soft phase is limited to twice the domain wall thickness of the hard phase. We investigated the structural and magnetic properties of SmCo5/Co exchange coupled multilayer grown by magnetron sputtering from Sm and Co targets successively at elevated substrate temperature and subsequent in-situ annealing. X-ray diffraction indicates the formation of polycrystalline SmCo5 hard phase. Formation of hard/soft multilayered structure was confirmed through transmission electron microscopy. Magnetic hysteresis measurements showed single phase like behavior, which indicates the soft layer (Co) is well exchange coupled with the neighboring hard phase of SmCo5. Maximum energy product of 15.37 MGOe with HC ∼ 3.02 kOe was obtained

    Charge transport studies on Si nanopillars for photodetectors fabricated using vapor phase metal-assisted chemical etching.

    Get PDF
    Si nanopillars (SiNPLs) were fabricated using a novel vapor phase metal-assisted chemical etching (V-Mace) and nanosphere lithography. The temperature dependent current–voltage (I–V) characteristics have been studied over a broad temperature range 170–360 K. The SiNPLs show a Schottky diode-like behavior at a temperature below 300 K and the rectification (about two orders of magnitude) is more prominent at temperature < 210 K. The electrical properties are discussed in detail using Cheung’s and Norde methods, and the Schottky diode parameters, such as barrier height, ideality factor, series resistance, are carefully figured out and compared with different methods. Moreover, the light sensitivity of the SiNPLs has been studied using I–V characteristics in dark and under the illumination of white light and UV light. The SiNPLs show fast response to the white light and UV light (response time of 0.18 and 0.26 s) under reverse bias condition and the mechanism explained using band diagram. The ratio of photo-to-dark current shows a peak value of 9.8 and 6.9 for white light and UV light, respectively. The Si nanopillars exhibit reflectance < 4% over the wavelength region 250–800 nm with a minimum reflectance of 2.13% for the optimized sample. The superior light absorption of the SiNPLs induced fast response in the I–V characteristics under UV light and white light. The work function of the SiNPLs in dark and under illumination has been also studied using Kelvin probe to confirm the light sensitivity

    Universal and non-universal features of glassy relaxation in propylene carbonate

    Full text link
    It is demonstrated that the susceptibility spectra of supercooled propylene carbonate as measured by depolarized-light-scattering, dielectric-loss, and incoherent quasi-elastic neutron-scattering spectroscopy within the GHz window are simultaneously described by the solutions of a two-component schematic model of the mode-coupling theory (MCT) for the evolution of glassy dynamics. It is shown that the universal beta-relaxation-scaling laws, dealing with the asymptotic behavior of the MCT solutions, describe the qualitative features of the calculated spectra. But the non-universal corrections to the scaling laws render it impossible to achieve a complete quantitative description using only the leading-order-asymptotic results.Comment: 37 pages, 16 figures, to be published in Phys. Rev.

    Propylene Carbonate Reexamined: Mode-Coupling β\beta Scaling without Factorisation ?

    Full text link
    The dynamic susceptibility of propylene carbonate in the moderately viscous regime above TcT_{\rm c} is reinvestigated by incoherent neutron and depolarised light scattering, and compared to dielectric loss and solvation response. Depending on the strength of α\alpha relaxation, a more or less extended β\beta scaling regime is found. Mode-coupling fits yield consistently λ=0.72\lambda=0.72 and Tc=182T_{\rm c}=182 K, although different positions of the susceptibility minimum indicate that not all observables have reached the universal asymptotics

    High-temperature stable spinel nanocomposite solar selective absorber coating for concentrated solar thermal application.

    No full text
    A new Cu-Ni-Co ternary spinel/SiO2 nanocomposite oxide absorber with tandem layer approach is designed and developed for medium and high temperature solar selective receiver tube in concentrated solar thermal applications. The base absorber layer, developed by combining of nanostructured, transition metal spinel and composite oxides with a series of transition metal based salts (Co, Ni, and Cu) in wet chemical method. By optimizing the sol concentration, withdrawal speed and annealing temperature, uniform absorber layer with solar absorptance (α) of 0.91 and emittance (ε) of 0.14 were achieved in a single layer coating with a composite oxide formation. On top of the base absorber layer, coating integrated with silica (SiO2) nanoparticles added as an optical enhancement layer to make the coating more selective (α: 0.95 & ε: 0.13). A thorough characterization has been done for the optical and physiochemical properties of the samples. Besides, the optimized spinel coating exhibits a low radiative loss of about 0.18 thermal emissivity at 500 °C and 89.3 % photothermal conversion efficiency at 500 °C, which identifies that the spinels are a very good candidate for medium and high temperature solar selective absorbers

    Measurement of high temperature emissivity and photothermal conversion efficiency of TiAlC/TiAlCN/TiAlSiCN/TiAlSiCO/TiAlSiO spectrally selective coating.

    No full text
    A spectrally selective TiAlC/TiAlCN/TiAlSiCN/TiAlSiCO/TiAlSiO coating was deposited on stainless steel substrate by unbalanced magnetron sputtering system. Each individual layer of the tandem absorber was optimized by varying the reactive gas flow rates (C2H2, N2 and O2) and target power densities (Ti, Al and Si). The optimized tandem absorber shows a solar absorptance of 0.960 and an emittance of 0.15 at 82 °C, measured using solar spectrum reflectometer and emissometer, respectively. In order to study the optical properties of the deposited tandem absorber at high operating temperatures the reflectance spectra of the tandem absorber were measured at temperatures ranging from 80 °C to 500 °C by UV–Vis–NIR spectrophotometer and FTIR spectrometers. The reflectance spectra of the as-deposited sample and after high temperature reflectance measurements did not show any significant changes. The thermal emittance of the tandem absorber at high temperatures (80–500 °C) was studied in detail. At the temperature of 200 °C, 300 °C, 400 °C and 500 °C the tandem absorber shows the emittance of 0.152–0.157, 0.181–0.19, 0.214–0.246 and 0.251–0.275, respectively with an absorptance of ~0.930. These results show the good selectivity of the tandem absorber even at high operating temperatures (e.g., 500 °C) with a photothermal conversion efficiency of 88%, thus demonstrating that the tandem absorber is suitable for solar thermal power generation applications. Reflectance and roughness data of the absorber coating post annealing in air up to 600 °C for 2 h, carried out independently, corroborated the present results

    Tailored periodic Si nanopillar based architectures as highly sensitive universal SERS biosensing platform.

    Get PDF
    We report a skeleton key platform for surface enhanced Raman spectroscopy (SERS) based biosensor, utilizing ordered arrays of Si nanopillars (SiNPLs) with plasmonic silver nanoparticles (AgNPs). The optimized SiNPLs based SERS (SiNPLs-SERS) sensor exhibited high enhancement factor (EF) of 2.4 × 108 for thiophenol with sensitivity down to 10−13 M of R6G molecules. The ordered array of SiNPLs stabilizes the distribution of AgNPs along with the light trapping properties, which resulted in high EF and excellent reproducibility. The uniformity in the arrangement of AgNPs makes a single SiNPLs-SERS substrate to work for all types of biomolecules such as positively and negatively charged proteins, hydrophobic proteins, cells and dyes, etc. The experiments conducted on differently charged proteins, amyloid beta (the protein responsible for alzheimers), E. coli cells, healthy and malaria infected RBCs provide a proof of concept for employing universal SiNPLs-SERS substrate for trace biomolecule detection. The FDTD simulations substantiate the superior performance of the sensor achieved by the tremendous increase in the hotspot distribution compared to the bare Si sensor

    Structural, magnetic and NO2 gas sensing property of CuO nanoparticles.

    No full text
    Cupric oxide (CuO) nanoparticles are synthesized by the oxidation of Cu/Cu2O, which is obtained by the chemical reduction of Cu2+ ions with ascorbic acid. XRD pattern confirmed the formation of CuO, and FE-SEM image shows the clusters consisting of 25–30 nm sized particles. The band gap energy (3.7 eV) from optical absorption spectra is blue shifted to that of bulk values. The Néel temperature, TN ≈ 230 K for paramagnetic to antiferromagnetic transition was clearly seen. The magnetic hysteresis loops at 5 K showed weak ferromagnetic behavior. Based on the dc electrical conductivity (300–500 K), the apparent activation energy was 0.36 eV. The NO2 gas sensing property of CuO was reasonably good in the temperature range of 200–300 °C, and the sensitivity increased with an increase in gas concentration but the effect of temperature is marginal

    Highly transparent and conducting ITO/Ag/ITO multilayer thin films on FEP substrates for flexible electronics applications.

    No full text
    Transparent and conducting ITO/Ag/ITO (IAI) multilayer coatings were deposited on glass and flexible fluorinated ethylene propylene (FEP) substrates by reactive sputtering using metallic In:Sn (90%:10%) and Ag targets at room temperature. Middle Ag layer thickness was optimized to obtain maximum figure of merit and the optimum Ag layer thickness was found to be ~13 nm. The optimized IAI multilayer on glass substrate showed transmittance of ~88.6% and sheet resistance of ~7.1 Ω/sq. The transmittance increased to ~91.4% for the IAI multilayer deposited on one side etched glass. The optimized IAI multilayer coating was also deposited on flexible FEP substrates. The electrical, optical, structural and morphological properties of IAI deposited on glass and FEP substrates were compared. IAI deposited on FEP substrate showed transmittance of ~90.2% at λ = 550 nm, sheet resistance of ~6.9 Ω/sq. and figure of merit of ~52 × 10−3 Ω−1. Bending test of IAI deposited FEP proved the high flexibility of IAI multilayer for the flexible transparent electrode applications. Solar selectivity study of IAI on FEP substrate showed it can effectively reflect the higher wavelength region of solar spectrum and can be used as a flexible solar spectrum segregator. Optical haze measurements of IAI coated glass and FEP show that high haze value can be achieved by increasing the roughness on non-coated side of the FEP substrate
    corecore