14 research outputs found

    Two Distinctly Localized P-Type ATPases Collaborate to Maintain Organelle Homeostasis Required for Glycoprotein Processing and Quality Control

    No full text
    Membrane transporter proteins are essential for the maintenance of cellular ion homeostasis. In the secretory pathway, the P-type ATPase family of transporters is found in every compartment and the plasma membrane. Here, we report the identification of COD1/SPF1 (control of HMG-CoA reductase degradation/SPF1) through genetic strategies intended to uncover genes involved in protein maturation and endoplasmic reticulum (ER)-associated degradation (ERAD), a quality control pathway that rids misfolded proteins. Cod1p is a putative ER P-type ATPase whose expression is regulated by the unfolded protein response, a stress-inducible pathway used to monitor and maintain ER homeostasis. COD1 mutants activate the unfolded protein response and are defective in a variety of functions apart from ERAD, which further support a homeostatic role. COD1 mutants display phenotypes similar to strains lacking Pmr1p, a Ca(2+)/Mn(2+) pump that resides in the medial-Golgi. Because of its localization, the previously reported role of PMR1 in ERAD was somewhat enigmatic. A clue to their respective roles came from observations that the two genes are not generally required for ERAD. We show that the specificity is rooted in a requirement for both genes in protein-linked oligosaccharide trimming, a requisite ER modification in the degradation of some misfolded glycoproteins. Furthermore, Cod1p, like Pmr1p, is also needed for the outer chain modification of carbohydrates in the Golgi apparatus despite its ER localization. In strains deleted of both genes, these activities are nearly abolished. The presence of either protein alone, however, can support partial function for both compartments. Taken together, our results reveal an interdependent relationship between two P-type ATPases to maintain homeostasis of the organelles where they reside

    Effects of proteinase A on cultivation and viability characteristics of industrial Saccharomyces cerevisiae WZ65*

    No full text
    Proteinase A (PrA), encoded by PEP4 gene, is a key enzyme in the vacuoles of Saccharomyces cerevisiae. We characterized the effects of PrA on cell growth and glucose metabolism in the industrial S. cerevisiae WZ65. It was observed that the lag phase of cell growth of partial PEP4 gene deletion mutant (36 h) and PrA-negative mutant (48 h) was significantly extended, compared with the wild type strain (24 h) (P<0.05), but PrA had no effect on glucose metabolism either under shaking or steady state cultivations. The logistic model was chosen to evaluate the effect of PrA on S. cerevisiae cell growth, and PrA was found to promote cell growth against insufficient oxygen condition in steady state cultivation, but had no effect in shaking cultivation. The effects of glucose starvation on cell growth of partial PEP4 gene deletion strain and PrA-negative mutant were also evaluated. The results show that PrA partial deficiency increased the adaption of S. cerevisiae to unfavorable nutrient environment, but had no effect on glucose metabolism under the stress of low glucose. During heat shock test, at 60 °C the reduced cell viability rate (RCVR) was 10% for the wild type S. cerevisiae and 90% for both mutant strains (P<0.01), suggesting that PrA was a negative factor for S. cerevisiae cells to survive under heat shock. As temperatures rose from 60 °C to 70 °C, the wild type S. cerevisiae had significantly lower relative glucose consumption rate (RGCR) (61.0% and 80.0%) than the partial mutant (78.0% and 98.5%) and the complete mutant (80.0% and 98.0%) (P<0.05), suggesting that, in coping with heat shock, cells of the PrA mutants increased their glucose consumption to survive. The present study may provide meaningful information for brewing industry; however, the role of PrA in industrial S. cerevisiae physiology is complex and needs to be further investigated
    corecore