1,528 research outputs found
Statistical Mechanics of Nonuniform Magnetization Reversal
The magnetization reversal rate via thermal creation of soliton pairs in
quasi-1D ferromagnetic systems is calculated. Such a model describes e.g. the
time dependent coercivity of elongated particles as used in magnetic recording
media. The energy barrier that has to be overcome by thermal fluctuations
corresponds to a soliton-antisoliton pair whose size depends on the external
field. In contrast to other models of first order phase transitions such as the
phi^4 model, an analytical expression for this energy barrier is found for all
values of the external field. The magnetization reversal rate is calculated
using a functional Fokker-Planck description of the stochastic magnetization
dynamics. Analytical results are obtained in the limits of small fields and
fields close to the anisotropy field. In the former case the hard-axis
anisotropy becomes effectively strong and the magnetization reversal rate is
shown to reduce to the nucleation rate of soliton-antisoliton pairs in the
overdamped double sine-Gordon model. The present theory therefore includes the
nucleation rate of soliton-antisoliton pairs in the double sine-Gordon chain as
a special case. These results demonstrate that for elongated particles, the
experimentally observed coercivity is significantly lower than the value
predicted by the standard theories of N\'eel and Brown.Comment: 21 pages RevTex 3.0 (twocolumn), 6 figures available on request, to
appear in Phys Rev B, Dec (1994
Temperature correction to the Casimir force in cryogenic range and anomalous skin effect
Temperature correction to the Casimir force is considered for real metals at
low temperatures. With the temperature decrease the mean free path for
electrons becomes larger than the field penetration depth. In this condition
description of metals with the impedance of anomalous skin effect is shown to
be more appropriate than with the permittivity. The effect is crucial for the
temperature correction. It is demonstrated that in the zero frequency limit the
reflection coefficients should coincide with those of ideal metal if we demand
the entropy to be zero at T=0. All the other prescriptions discussed in the
literature for the term in the Lifshitz formula give negative entropy. It
is shown that the temperature correction in the region of anomalous skin effect
is not suppressed as it happens in the plasma model. This correction will be
important in the future cryogenic measurements of the Casimir force.Comment: 12 pages, 2 figures, to be published in Phys. Rev.
Properties of the Fixed Point Lattice Dirac Operator in the Schwinger Model
We present a numerical study of the properties of the Fixed Point lattice
Dirac operator in the Schwinger model. We verify the theoretical bounds on the
spectrum, the existence of exact zero modes with definite chirality, and the
Index Theorem. We show by explicit computation that it is possible to find an
accurate approximation to the Fixed Point Dirac operator containing only very
local couplings.Comment: 38 pages, LaTeX, 3 figures, uses style [epsfig], a few comments and
relevant references adde
Unstable particles in matter at a finite temperature: the rho and omega mesons
Unstable particles (such as the vector mesons) have an important role to play
in low mass dilepton production resulting from heavy ion collisions and this
has been a subject of several investigations. Yet subtleties, such as the
implications of the generalization of the Breit-Wigner formula for nonzero
temperature and density, e.g. the question of collisional broadening, the role
of Bose enhancement, etc., the possibility of the kinematic opening (or
closing) of decay channels due to environmental effects, the problem of double
counting through resonant and direct contributions, are often given
insufficient emphasis. The present study attempts to point out these features
using the rho and omega mesons as illustrative examples. The difference between
the two versions of the Vector Meson Dominance Model in the present context is
also presented. Effects of non-zero temperature and density, through vector
meson masses and decay widths, on dilepton spectra are studied, for
concreteness within the framework of a Walecka-type model, though most of the
basic issues highlighted apply to other scenarios as well.Comment: text and figures modifie
Fluctuations of the Retarded Van der Waals Force
The retarded Van der Waals force between a polarizable particle and a
perfectly conducting plate is re-examined. The expression for this force given
by Casimir and Polder represents a mean force, but there are large fluctuations
around this mean value on short time scales which are of the same order of
magnitude as the mean force itself. However, these fluctuations occur on time
scales which are typically of the order of the light travel time between the
atom and the plate. As a consequence, they will not be observed in an
experiment which measures the force averaged over a much longer time. In the
large time limit, the magnitude of the mean squared velocity of a test particle
due to this fluctuating Van der Waals force approaches a constant, and is
similar to a Brownian motion of a test particle in an thermal bath with an
effective temperature. However the fluctuations are not isotropic in this case,
and the shift in the mean square velocity components can even be negative. We
interpret this negative shift to correspond to a reduction in the velocity
spread of a wavepacket. The force fluctuations discussed in this paper are
special case of the more general problem of stress tensor fluctuations. These
are of interest in a variety of areas fo physics, including gravity theory.
Thus the effects of Van der Waals force fluctuations serve as a useful model
for better understanding quantum effects in gravity theory.Comment: 14 pages, no figure
Polaron Effective Mass, Band Distortion, and Self-Trapping in the Holstein Molecular Crystal Model
We present polaron effective masses and selected polaron band structures of
the Holstein molecular crystal model in 1-D as computed by the Global-Local
variational method over a wide range of parameters. These results are augmented
and supported by leading orders of both weak- and strong-coupling perturbation
theory. The description of the polaron effective mass and polaron band
distortion that emerges from this work is comprehensive, spanning weak,
intermediate, and strong electron-phonon coupling, and non-adiabatic, weakly
adiabatic, and strongly adiabatic regimes. Using the effective mass as the
primary criterion, the self-trapping transition is precisely defined and
located. Using related band-shape criteria at the Brillouin zone edge, the
onset of band narrowing is also precisely defined and located. These two lines
divide the polaron parameter space into three regimes of distinct polaron
structure, essentially constituting a polaron phase diagram. Though the
self-trapping transition is thusly shown to be a broad and smooth phenomenon at
finite parameter values, consistency with notion of self-trapping as a critical
phenomenon in the adiabatic limit is demonstrated. Generalizations to higher
dimensions are considered, and resolutions of apparent conflicts with
well-known expectations of adiabatic theory are suggested.Comment: 28 pages, 15 figure
Chiral symmetry restoration in linear sigma models with different numbers of quark flavors
Chiral symmetry restoration at nonzero temperature is studied in the
framework of the O(4) linear sigma model and the U(N_f)_r x U(N_f)_l linear
sigma model with N_f=2,3, and 4 quark flavors. We investigate the temperature
dependence of the masses of the scalar and pseudoscalar mesons, and the
non-strange, strange, and charm condensates within the Hartree approximation as
derived from the Cornwall-Jackiw-Tomboulis formalism. We find that the masses
of the non-strange and strange mesons at nonzero temperature depend sensitively
on the particular symmetry of the model and the number of light quark flavors
N_f. On the other hand, due to the large charm quark mass, neither do charmed
mesons significantly affect the properties of the other mesons, nor do their
masses change appreciably in the temperature range around the chiral symmetry
restoration temperature. In the chiral limit, the transition temperatures for
chiral symmetry restoration are surprisingly close to those found in lattice
QCD.Comment: 28 pages, 8 figure
Effects of dimensionality and anisotropy on the Holstein polaron
We apply weak-coupling perturbation theory and strong-coupling perturbation
theory to the Holstein molecular crystal model in order to elucidate the
effects of anisotropy on polaron properties in D dimensions. The ground state
energy is considered as a primary criterion through which to study the effects
of anisotropy on the self-trapping transition, the self-trapping line
associated with this transition, and the adiabatic critical point. The effects
of dimensionality and anisotropy on electron-phonon correlations and polaronic
mass enhancement are studied, with particular attention given to the polaron
radius and the characteristics of quasi-1D and quasi-2D structures.
Perturbative results are confirmed by selected comparisons with variational
calculations and quantum Monte Carlo data
- …