39 research outputs found
Recommended from our members
Feasibility study and design concept for an orbiting ice-penetrating radar sounder to characterize in three-dimensions the Europan ice mantle down to (and including) any ice/ocean interface
This report presents a radar sounding model based on the range of current working hypotheses for the nature of Europa's icy shell.Institute for Geophysic
Polarimetric SAR Image Segmentation with B-Splines and a New Statistical Model
We present an approach for polarimetric Synthetic Aperture Radar (SAR) image
region boundary detection based on the use of B-Spline active contours and a
new model for polarimetric SAR data: the GHP distribution. In order to detect
the boundary of a region, initial B-Spline curves are specified, either
automatically or manually, and the proposed algorithm uses a deformable
contours technique to find the boundary. In doing this, the parameters of the
polarimetric GHP model for the data are estimated, in order to find the
transition points between the region being segmented and the surrounding area.
This is a local algorithm since it works only on the region to be segmented.
Results of its performance are presented
Dem reconstruction of coastal geomorphology from dinsar
The paper is focused on Digital Elevation Model (DEM) reconstruction from differential interferometry synthetic aperture radar (DInSAR). In doing so, conventional DInSAR procedures are implemented to three repeat passes of RADARSAT-1 SAR fine mode data (F1). Further, the multichannel MAP height estimator is implemented with phase unwrapping technique. Consequently, the multichannel MAP height estimator is used to eliminate the phase decorrelation impact from the interferograms. The study shows the performance of DInSAR method using the multichannel MAP height estimator is better than DInSAR technique which is validated by a lower range of error (0.01±0.11 m) with 90% confidence intervals. In conclusion, integration of the multichannel MAP height estimator with phase unwrapping produce accurate 3-D coastal geomorphology reconstruction
Wide band SAR sub-band splitting and inter-band coherence measurements
Range resolution of SAR images is determined by transmitted radar signal bandwidth. Most recent SAR sensors use wide band signals in order to achieve metric range resolution, whereas metric azimuth resolution can be achieved in spotlight mode. As an example, ENVISAT ASAR sensor uses a 15-MHz bandwidth chirp whereas TerraSAR-X spotlight mode uses signals having a 150-MHz bandwidth leading to a potentially 10 times higher resolution. One can also take advantage of wide band to split the full band into sub-bands and generate several lower resolution images from a single acquisition, each being centred on slightly different frequencies. These sub-images can then be used in a classical interferometric process to measure inter-band coherence of a given scene. This inter-band coherence reveals scatterers keeping a stable-phase behaviour along with frequency shift. A simple coherence model derived from Zebker model for randomly distributed surface scatterers is proposed. Examples are presented, showing that scatterers can have a behaviour that deviates from the model, leading to a new information channel.WiMCA - Wide Band interferometric Multichromatic Analysi
Seasonal thaw settlement at drained thermokarst lake basins, Arctic Alaska
Drained thermokarst lake basins (DTLBs) are ubiquitous landforms on Arctic tundra lowland. Their dynamic states are seldom investigated, despite their importance for landscape stability, hydrology, nutrient fluxes, and carbon cycling. Here we report results based on high-resolution Interferometric Synthetic Aperture Radar (InSAR) measurements using space-borne data for a study area located on the North Slope of Alaska near Prudhoe Bay, where we focus on the seasonal thaw settlement within DTLBs, averaged between 2006 and 2010. The majority (14) of the 18 DTLBs in the study area exhibited seasonal thaw settlement of 3–4 cm. However, four of the DTLBs examined exceeded 4 cm of thaw settlement, with one basin experiencing up to 12 cm. Combining the InSAR observations with the in situ active layer thickness measured using ground penetrating radar and mechanical probing, we calculated thaw strain, an index of thaw settlement strength along a transect across the basin that underwent large thaw settlement. We found thaw strains of 10–35% at the basin center, suggesting the seasonal melting of ground ice as a possible mechanism for the large settlement. These findings emphasize the dynamic nature of permafrost landforms, demonstrate the capability of the InSAR technique to remotely monitor surface deformation of individual DTLBs, and illustrate the combination of ground-based and remote sensing observations to estimate thaw strain. Our study highlights the need for better description of the spatial heterogeneity of landscape-scale processes for regional assessment of surface dynamics on Arctic coastal lowlands