45 research outputs found

    Braneworld reheating in the bulk inflaton model

    Full text link
    In the context of the braneworld inflation driven by a bulk scalar field, we study the energy dissipation from the bulk scalar field into the matter on the brane in order to understand the reheating after inflation. Deriving the late-time behavior of the bulk field with dissipation by using the Green's function method, we give a rigorous justification of the statement that the standard reheating process is reproduced in this bulk inflaton model as long as the Hubble parameter on the brane and the mass of the bulk scalar field are much smaller than the 5-dimensional inverse curvature scale. Our result supports the idea that the brane inflation model caused by a bulk scalar field is expected to be a viable alternative scenario of the early universe.Comment: 5 pages, no figures, final version to be published in PR

    Godel brane

    Full text link
    We consider the brane-world generalisation of the Godel universe and analyse its dynamical interaction with the bulk. The exact homogeneity of the standard Godel spacetime no longer holds, unless the bulk is also static. We show how the anisotropy of the Godel-type brane is dictated by that of the bulk and find that the converse is also true. This determines the precise evolution of the nonlocal anisotropic stresses, without any phenomenological assumptions, and leads to a self-consistent closed set of equations for the evolution of the Godel brane. We also examine the causality of the Godel brane and show that the presence of the bulk cannot prevent the appearance of closed timelike curves.Comment: Revised version, to match paper published in Phys. Rev.

    On Brane World Cosmological Perturbations

    Full text link
    We discuss the scalar cosmological perturbations in a 3-brane world with a 5D bulk. We first show explicitly how the effective perturbed Einstein's equations on the brane (involving the Weyl fluid) are encoded into Mukohyama's master equation. We give the relation between Mukohyama's master variable and the perturbations of the Weyl fluid, we also discuss the relation between the former and the perturbations of matter and induced metric on the brane. We show that one can obtain a boundary condition on the brane for the master equation solely expressible in term of the master variable, in the case of a perfect fluid with adiabatic perturbations on a Randall-Sundrum (RS) or Dvali-Gabadadze-Porrati (DGP) brane. This provides an easy way to solve numerically for the evolution of the perturbations as well as should shed light on the various approximations done in the literature to deal with the Weyl degrees of freedom.Comment: 36 pages, 1 figur

    (1+3) Covariant Dynamics of Scalar Perturbations in Braneworlds

    Full text link
    We discuss the dynamics of linear, scalar perturbations in an almost Friedmann-Robertson-Walker braneworld cosmology of Randall-Sundrum type II using the 1+3 covariant approach. We derive a complete set of frame-independent equations for the total matter variables, and a partial set of equations for the non-local variables which arise from the projection of the Weyl tensor in the bulk. The latter equations are incomplete since there is no propagation equation for the non-local anisotropic stress. We supplement the equations for the total matter variables with equations for the independent constituents in a cold dark matter cosmology, and provide solutions in the high and low-energy radiation-dominated phase under the assumption that the non-local anisotropic stress vanishes. These solutions reveal the existence of new modes arising from the two additional non-local degrees of freedom. Our solutions should prove useful in setting up initial conditions for numerical codes aimed at exploring the effect of braneworld corrections on the cosmic microwave background (CMB) power spectrum. As a first step in this direction, we derive the covariant form of the line of sight solution for the CMB temperature anisotropies in braneworld cosmologies, and discuss possible mechanisms by which braneworld effects may remain in the low-energy universe.Comment: 22 pages replaced with additional references and minor corrections in Revtex4, and accepted for publication in Phys. Rev.

    Exactly solvable model for cosmological perturbations in dilatonic brane worlds

    Full text link
    We construct a model where cosmological perturbations are analytically solved based on dilatonic brane worlds. A bulk scalar field has an exponential potential in the bulk and an exponential coupling to the brane tension. The bulk scalar field yields a power-law inflation on the brane. The exact background metric can be found including the back-reaction of the scalar field. Then exact solutions for cosmological perturbations which properly satisfy the junction conditions on the brane are derived. These solutions provide us an interesting model to understand the connection between the behavior of cosmological perturbations on the brane and the geometry of the bulk. Using these solutions, the behavior of an anisotropic stress induced on the inflationary brane by bulk gravitational fields is investigated.Comment: 30 pages, typos corrected, reference adde

    Bulk scalar field in the braneworld can mimic the 4D inflaton dynamics

    Full text link
    Based on the recently proposed scenario of inflation driven by a bulk scalar field in the braneworld of the Randall-Sundrum (RS) type, we investigate the dynamics of a bulk scalar field on the inflating braneworld. We derive the late time behavior of the bulk scalar field by analyzing the property of the retarded Green function. We find that the late time behavior is basically dominated by a single (or a pair of) pole(s) in the Green function irrespective of the initial condition and of the signature of m2=Vâ€Čâ€Č(ϕ)m^{2}=V''(\phi), where V(ϕ)V(\phi) is the potential of the bulk scalar field. Including the lowest order back-reaction to the geometry, this late time behavior can be well approximated by an effective 4-dimensional scalar field with meff2=m2/2m^2_{\mathrm{eff}}=m^2/2. The mapping to the 4-dimensional effective theory is given by a simple scaling of the potential with a redefinition of the field. Our result supports the picture that the scenario of inflation driven by a bulk scalar field works in a quite similar way to that in the standard 4-dimensional cosmology.Comment: 12 pages, no figures, final version to be published in PR

    Perturbations on a moving D3-brane and mirage cosmology

    Full text link
    We study the evolution of perturbations on a moving probe D3-brane coupled to a 4-form field in an AdS5_5-Schwarzschild bulk. The unperturbed dynamics are parametrised by a conserved energy EE and lead to Friedmann-Robertson-Walker `mirage' cosmology on the brane with scale factor a(τ)a(\tau). The fluctuations about the unperturbed worldsheet are then described by a scalar field ϕ(τ,x⃗)\phi(\tau,\vec{x}). We derive an equation of motion for ϕ\phi, and find that in certain regimes of aa the effective mass squared is negative. On an expanding BPS brane with E=0 superhorizon modes grow as a4a^4 whilst subhorizon modes are stable. When the brane contracts, all modes grow. We also briefly discuss the case when E>0E>0, BPS anti-branes as well as non-BPS branes. Finally, the perturbed brane embedding gives rise to scalar perturbations in the FRW universe. We show that ϕ\phi is proportional to the gauge invariant Bardeen potentials on the brane.Comment: 26 pages, 5 figures, to appear in Phys.Rev.D, comments and minor corrections adde

    Braneworld Tensor Anisotropies in the CMB

    Get PDF
    Cosmic microwave background (CMB) observations provide in principle a high-precision test of models which are motivated by M theory. We set out the framework of a program to compute the tensor anisotropies in the CMB that are generated in braneworld models. In the simplest approximation, we show the braneworld imprint as a correction to the power spectra for standard temperature and polarization anisotropies.Comment: Minor corrections and references added. Accepted for publication in Phys. Rev.

    Vacuum solutions of the gravitational field equations in the brane world model

    Get PDF
    We consider some classes of solutions of the static, spherically symmetric gravitational field equations in the vacuum in the brane world scenario, in which our Universe is a three-brane embedded in a higher dimensional space-time. The vacuum field equations on the brane are reduced to a system of two ordinary differential equations, which describe all the geometric properties of the vacuum as functions of the dark pressure and dark radiation terms (the projections of the Weyl curvature of the bulk, generating non-local brane stresses). Several classes of exact solutions of the vacuum gravitational field equations on the brane are derived. In the particular case of a vanishing dark pressure the integration of the field equations can be reduced to the integration of an Abel type equation. A perturbative procedure, based on the iterative solution of an integral equation, is also developed for this case. Brane vacuums with particular symmetries are investigated by using Lie group techniques. In the case of a static vacuum brane admitting a one-parameter group of conformal motions the exact solution of the field equations can be found, with the functional form of the dark radiation and pressure terms uniquely fixed by the symmetry. The requirement of the invariance of the field equations with respect to the quasi-homologous group of transformations also imposes a unique, linear proportionality relation between the dark energy and dark pressure. A homology theorem for the static, spherically symmetric gravitational field equations in the vacuum on the brane is also proven.Comment: 13 pages, no figures, to appear in PR

    Einstein's quantum theory of the monatomic ideal gas: non-statistical arguments for a new statistics

    Full text link
    In this article, we analyze the third of three papers, in which Einstein presented his quantum theory of the ideal gas of 1924-1925. Although it failed to attract the attention of Einstein's contemporaries and although also today very few commentators refer to it, we argue for its significance in the context of Einstein's quantum researches. It contains an attempt to extend and exhaust the characterization of the monatomic ideal gas without appealing to combinatorics. Its ambiguities illustrate Einstein's confusion with his initial success in extending Bose's results and in realizing the consequences of what later became to be called Bose-Einstein statistics. We discuss Einstein's motivation for writing a non-combinatorial paper, partly in response to criticism by his friend Ehrenfest, and we paraphrase its content. Its arguments are based on Einstein's belief in the complete analogy between the thermodynamics of light quanta and of material particles and invoke considerations of adiabatic transformations as well as of dimensional analysis. These techniques were well-known to Einstein from earlier work on Wien's displacement law, Planck's radiation theory, and the specific heat of solids. We also investigate the possible role of Ehrenfest in the gestation of the theory.Comment: 57 pp
    corecore