6,403 research outputs found
Dynamical properties of dipolar Fermi gases
We investigate dynamical properties of a one-component Fermi gas with
dipole-dipole interaction between particles. Using a variational function based
on the Thomas-Fermi density distribution in phase space representation, the
total energy is described by a function of deformation parameters in both real
and momentum space. Various thermodynamic quantities of a uniform dipolar Fermi
gas are derived, and then instability of this system is discussed. For a
trapped dipolar Fermi gas, the collective oscillation frequencies are derived
with the energy-weighted sum rule method. The frequencies for the monopole and
quadrupole modes are calculated, and softening against collapse is shown as the
dipolar strength approaches the critical value. Finally, we investigate the
effects of the dipolar interaction on the expansion dynamics of the Fermi gas
and show how the dipolar effects manifest in an expanded cloud.Comment: 14 pages, 8 figures, submitted to New J. Phy
Controlling Condensate Collapse and Expansion with an Optical Feshbach Resonance
We demonstrate control of the collapse and expansion of an 88Sr Bose-Einstein
condensate using an optical Feshbach resonance (OFR) near the 1S0-3P1
intercombination transition at 689 nm. Significant changes in dynamics are
caused by modifications of scattering length by up to +- ?10a_bg, where the
background scattering length of 88Sr is a_bg = -2a0 (1a0 = 0.053 nm). Changes
in scattering length are monitored through changes in the size of the
condensate after a time-of-flight measurement. Because the background
scattering length is close to zero, blue detuning of the OFR laser with respect
to a photoassociative resonance leads to increased interaction energy and a
faster condensate expansion, whereas red detuning triggers a collapse of the
condensate. The results are modeled with the time-dependent nonlinear
Gross-Pitaevskii equation.Comment: 5 pages, 3 figure
On the single mode approximation in spinor-1 atomic condensate
We investigate the validity conditions of the single mode approximation (SMA)
in spinor-1 atomic condensate when effects due to residual magnetic fields are
negligible. For atomic interactions of the ferromagnetic type, the SMA is shown
to be exact, with a mode function different from what is commonly used.
However, the quantitative deviation is small under current experimental
conditions (for Rb atoms). For anti-ferromagnetic interactions, we find
that the SMA becomes invalid in general. The differences among the mean field
mode functions for the three spin components are shown to depend strongly on
the system magnetization. Our results can be important for studies of beyond
mean field quantum correlations, such as fragmentation, spin squeezing, and
multi-partite entanglement.Comment: Revised, newly found analytic proof adde
Coherent population trapping and dynamical instability in the nonlinearly coupled atom-molecule system
We study the possibility of creating a coherent population trapping (CPT)
state, involving free atomic and ground molecular condensates, during the
process of associating atomic condensate into molecular condensate. We
generalize the Bogoliubov approach to this multi-component system and study the
collective excitations of the CPT state in the homogeneous limit. We develop a
set of analytical criteria based on the relationship among collisions involving
atoms and ground molecules, which are found to strongly affect the stability
properties of the CPT state, and use it to find the stability diagram and to
systematically classify various instabilities in the long-wavelength limit.Comment: 11 pages, 8 figure
Excitation spectrum and instability of a two-species Bose-Einstein condensate
We numerically calculate the density profile and excitation spectrum of a
two-species Bose-Einstein condensate for the parameters of recent experiments.
We find that the ground state density profile of this system becomes unstable
in certain parameter regimes, which leads to a phase transition to a new stable
state. This state displays spontaneously broken cylindrical symmetry. This
behavior is reflected in the excitation spectrum: as we approach the phase
transition point, the lowest excitation frequency goes to zero, indicating the
onset of instability in the density profile. Following the phase transition,
this frequency rises again.Comment: 8 pages, 5 figures, uses REVTe
Modulational instability of spinor condensates
We demonstrate, analytically and numerically, that the ferromagnetic phase of
the spinor Bose-Einstein condenstate may experience modulational instability of
the ground state leading to a fragmentation of the spin domains. Together with
other nonlinear effects in the atomic optics of ultra-cold gases (such as
coherent photoassociation and four-wave mixing) this effect provides one more
analogy between coherent matter waves and light waves in nonlinear optics.Comment: 4 pages, 4 figures. Accepted for Phys. Rev. A Rapid Communication
Eliminating the mean-field shift in multicomponent Bose-Einstein condensates
We demonstrate that the nonlinear mean-field shift in a multi-component
Bose-Einstein condensate may be eliminated by controlling the two-body
interaction coefficients. This modification is achieved by, e.g., suitably
engineering the environment of the condensate. We consider as an example the
case of a two-component condensate in a tightly confining atom waveguide.
Modification of the atom-atom interactions is then achieved by varying
independently the transverse wave function of the two components. Eliminating
the density dependent phase shift in a high-density atomic beam has important
applications in atom interferometry and precision measurement
Signatures of Strong Correlations in One-Dimensional Ultra-Cold Atomic Fermi Gases
Recent success in manipulating ultra-cold atomic systems allows to probe
different strongly correlated regimes in one-dimension. Regimes such as the
(spin-coherent) Luttinger liquid and the spin-incoherent Luttinger liquid can
be realized by tuning the inter-atomic interaction strength and trap
parameters. We identify the noise correlations of density fluctuations as a
robust observable (uniquely suitable in the context of trapped atomic gases) to
discriminate between these two regimes. Finally, we address the prospects to
realize and probe these phenomena experimentally using optical lattices.Comment: 4 pages, 2 figure
Entangled quantum tunneling of two-component Bose-Einstein condensates
We examine the quantum tunneling process in Bose condensates of two
interacting species trapped in a double well configuration. We discover the
condition under which particles of different species can tunnel as pairs
through the potential barrier between two wells in opposition directions. This
novel form of tunneling is due to the interspecies interaction that eliminates
the self- trapping effect. The correlated motion of tunneling atoms leads to
the generation of quantum entanglement between two macroscopically coherent
systems.Comment: 4 pages, 3 figure
- …