2,361 research outputs found
Energy levels of a parabolically confined quantum dot in the presence of spin-orbit interaction
We present a theoretical study of the energy levels in a parabolically
confined quantum dot in the presence of the Rashba spin-orbit interaction
(SOI). The features of some low-lying states in various strengths of the SOI
are examined at finite magnetic fields. The presence of a magnetic field
enhances the possibility of the spin polarization and the SOI leads to
different energy dependence on magnetic fields applied. Furthermore, in high
magnetic fields, the spectra of low-lying states show basic features of
Fock-Darwin levels as well as Landau levels.Comment: 6 pages, 4 figures, accepted by J. Appl. Phy
Effect of Increasing Stocking Density on Performance and Heterophil/Lymphocyte Ratios in Broilers
An experiment on space allowance of 0.095, 0.071, 0.057 and 0.048 m2/bird on wire mesh cages was
conducted to study their effects on live-weight, feed intake and feed conversion of Orgal broilers from the age
of 4 to 10 weeks. Heterophil/lymphocyte (H/L) ratio,an indicator of stress was also studied to determine whether over-crowding would effect this ratio. During the first 2 weeks of the experiment increasing stocking is reduced feed intake and improve feed conversion without significantly affecting growth rate. Overall,
birds on the most liberal floor space allowance (0.095 m2/bird) had the best growth rate (39.2 glda») but this was achieved at a significantly higher feed intake (127.9 g/day) and poorer feed conversion (3.3).Conversely, birds on the highest stocking density (0.048 ,rz2lbiTd) had the poorest performance in terms of growlh rate (32.2 g/day) and feed intake(90.6 g/day). Birds on the two higher stocking density were constantly under stress as indicated by their relatively high H/L. ratios from the fourth week, of the study
onwards, these two treatments also had higher mortalities. The results of the present study showed that stress
associated with overcrowding reduced performance in broilers. A space allowance of 0.071 m2/bird is sufficient
under om- local conditions for broiled reared in raised floor cages
Pseudo spin-orbit coupling of Dirac particles in graphene spintronics
We study the pseudo spin-orbital (SO) effects experienced by massive Dirac
particles in graphene, which can potentially be of a larger magnitude compared
to the conventional Rashba SO effects experienced by particles in a 2DEG
semiconductor heterostructure. In order to generate a uniform vertical pseudo
SO field, we propose an artificial atomic structure, consisting of a graphene
ring and a charged nanodot at the center which produces a large radial electric
field. In this structure, a large pseudo SO coupling strength can be achieved
by accelerating the Dirac particles around the ring, due to the small energy
gap in graphene and the large radial electric field emanating from the charged
nanodot. We discuss the theoretical possibility of harnessing the pseudo SO
effects in mesoscopic applications, e.g. pseudo spin relaxation and switching.Comment: 12 pages, 1 figur
Overlapping-gate architecture for silicon Hall bar MOSFET devices in the low electron density regime
We report the fabrication and study of Hall bar MOSFET devices in which an
overlapping-gate architecture allows four-terminal measurements of low-density
2D electron systems, while maintaining a high density at the ohmic contacts.
Comparison with devices made using a standard single gate show that
measurements can be performed at much lower densities and higher channel
resistances, despite a reduced peak mobility. We also observe a voltage
threshold shift which we attribute to negative oxide charge, injected during
electron-beam lithography processing.Comment: 4 pages, 4 figures, submitted for Applied Physics Letter
Nonequilibrium Reweighting on the Driven Diffusive Lattice Gas
The nonequilibrium reweighting technique, which was recently developed by the
present authors, is used for the study of the nonequilibrium steady states. The
renewed formulation of the nonequlibrium reweighting enables us to use the very
efficient multi-spin coding. We apply the nonequilibrium reweighting to the
driven diffusive lattice gas model. Combining with the dynamical finite-size
scaling theory, we estimate the critical temperature Tc and the dynamical
exponent z. We also argue that this technique has an interesting feature that
enables explicit calculation of derivatives of thermodynamic quantities without
resorting to numerical differences.Comment: Accepted for publication in J. Phys. A (Lett.
Unbiased retrieval of frequency-dependent mechanical properties from noisy time-dependent signals
The mechanical response of materials to dynamic loading is often quantified by the frequency-dependent complex modulus. Probing materials directly in the frequency domain faces technical challenges such as a limited range of frequencies, long measurement times, or small sample sizes. Furthermore, many biological samples, such as cells or tissues, can change their properties upon repetitive probing at different frequencies. Therefore, it is common practice to extract the material properties by fitting predefined mechanical models to measurements performed in the time domain. This practice, however, precludes the probing of unique and yet unexplored material properties. In this report, we demonstrate that the frequency-dependent complex modulus can be robustly retrieved in a model-independent manner directly from time-dependent stress-strain measurements. While applying a rolling average eliminates random noise and leads to a reliable complex modulus in the lower frequency range, a Fourier transform with a complex frequency helps to recover the material properties at high frequencies. Finally, by properly designing the probing procedure, the recovery of reliable mechanical properties can be extended to an even wider frequency range. Our approach can be used with many state-of-the-art experimental methods to interrogate the mechanical properties of biological and other complex materials
- …