330,700 research outputs found
Detecting and diagnosing faults in dynamic stochastic distributions using a rational b-splines approximation to output PDFs
Describes the process of detecting and diagnosing faults in dynamic stochastic distributions using a rational b-splines approximation to output PDFs
Optical spectroscopy study of Nd(O,F)BiS2 single crystals
We present an optical spectroscopy study on F-substituted NdOBiS
superconducting single crystals grown using KCl/LiCl flux method. The
measurement reveals a simple metallic response with a relatively low screened
plasma edge near 5000 \cm. The plasma frequency is estimated to be 2.1 eV,
which is much smaller than the value expected from the first-principles
calculations for an electron doping level of x=0.5, but very close to the value
based on a doping level of 7 of itinerant electrons per Bi site as
determined by ARPES experiment. The energy scales of the interband transitions
are also well reproduced by the first-principles calculations. The results
suggest an absence of correlation effect in the compound, which essentially
rules out the exotic pairing mechanism for superconductivity or scenario based
on the strong electronic correlation effect. The study also reveals that the
system is far from a CDW instability as being widely discussed for a doping
level of x=0.5.Comment: 5 pages, 5 figure
Macroporous materials: microfluidic fabrication, functionalization and applications
This article provides an up-to-date highly comprehensive overview (594 references) on the state of the art of the synthesis and design of macroporous materials using microfluidics and their applications in different fields
The mean velocity of two-state models of molecular motor
The motion of molecular motor is essential to the biophysical functioning of
living cells. In principle, this motion can be regraded as a multiple chemical
states process. In which, the molecular motor can jump between different
chemical states, and in each chemical state, the motor moves forward or
backward in a corresponding potential. So, mathematically, the motion of
molecular motor can be described by several coupled one-dimensional hopping
models or by several coupled Fokker-Planck equations. To know the basic
properties of molecular motor, in this paper, we will give detailed analysis
about the simplest cases: in which there are only two chemical states.
Actually, many of the existing models, such as the flashing ratchet model, can
be regarded as a two-state model. From the explicit expression of the mean
velocity, we find that the mean velocity of molecular motor might be nonzero
even if the potential in each state is periodic, which means that there is no
energy input to the molecular motor in each of the two states. At the same
time, the mean velocity might be zero even if there is energy input to the
molecular motor. Generally, the velocity of molecular motor depends not only on
the potentials (or corresponding forward and backward transition rates) in the
two states, but also on the transition rates between the two chemical states
Room-Temperature Ferrimagnet with Frustrated Antiferroelectricity: Promising Candidate Toward Multiple State Memory
On the basis of first-principles calculations we show that the M-type
hexaferrite BaFe12O19 exhibits frustrated antiferroelectricity associated with
its trigonal bipyramidal Fe3+ sites. The ferroelectric (FE) state of BaFe12O19,
reachable by applying an external electric field to the antiferroelectric (AFE)
state, can be made stable at room temperature by appropriate element
substitution or strain engineering. Thus M-type hexaferrite, as a new type of
multiferoic with coexistence of antiferroelectricity and ferrimagnetism,
provide a basis for studying the phenomenon of frustrated antiferroelectricity
and realizing multiple state memory devices.Comment: supporting material available via email. arXiv admin note: text
overlap with arXiv:1210.7116 by other author
Optical properties of TlNi2Se2: Observation of pseudogap formation
The quasi-two-dimensional nickel chalcogenides is a newly
discovered superconductor. We have performed optical spectroscopy study on
single crystals over a broad frequency range at various
temperatures. The overall optical reflectance spectra are similar to those
observed in its isostructure . Both the suppression in
and the peaklike feature in suggest the progressive
formation of a pseudogap feature in the midinfrared range with decreasing
temperatures, which might be originated from the dynamic local fluctuation of
charge-density-wave (CDW) instability. We propose that the CDW instability in
is driven by the saddle points mechanism, due to the existence of
van Hove singularity very close to the Fermi energy.Comment: 5 pages, 4 figure
- …