55 research outputs found

    Detection of small amounts of human adenoviruses in stools: comparison of a new immuno real-time PCR assay with classical tools

    Get PDF
    AbstractThe detection of low virus concentrations in biological matrices, especially stool samples, is facing significant limitations as far as common diagnostic methods (enzyme-linked-immunosorbent assay (ELISA) or quantitative real-time PCR (qPCR)) are considered. Here the development of a new immuno real-time PCR (iPCR) is described and its performance in the detection of human adenoviruses (HAdVs) in spiked stools is compared with those of ELISA and qPCR assays. For the iPCR, detection of the sandwich formed by the complexation of capture antibody-antigen-detection antibody was performed by qPCR thanks to the substitution of peroxydase by a chimeric DNA. This modification increased the detection sensitivity 200-fold compared to ELISA. The direct qPCR results revealed that only 0.3–9.5% of the spiked HAdV were detectable, resulting from important losses of DNA occurring at the extraction step. This step was not necessary in the iPCR workflow, avoiding this drawback. The losses of viral particles occurred at the elution step from the stool only. The recovery rate of the iPCR was thus better and ranged between 21 and 54%. As a result, iPCR enabled the detection of lower virus concentrations in stool samples compared to those detected by ELISA and qPCR. The iPCR could be considered as a ‘hyper sensitive ELISA’ for early detection of HAdV infections, especially in the case of immunocompromised patients after haematopoietic stem cell transplant

    Combination of MALDI-TOf mass spectrometry and machine learning for rapid antimicrobial resistance screening: the CASE of Campylobacter spp

    Get PDF
    While MALDI-TOF mass spectrometry (MS) is widely considered as the reference method for the rapid and inexpensive identification of microorganisms in routine laboratories, less attention has been addressed to its ability for detection of antimicrobial resistance (AMR). Recently, some studies assessed its potential application together with machine learning for the detection of AMR in clinical pathogens. The scope of this study was to investigate MALDI-TOF MS protein mass spectra combined with a prediction approach as an AMR screening tool for relevant foodborne pathogens, such as Campylobacter coli and Campylobacter jejuni. A One-Health panel of 224 C. jejuni and 116 C. coli strains was phenotypically tested for seven antimicrobial resistances, i.e., ciprofloxacin, erythromycin, tetracycline, gentamycin, kanamycin, streptomycin, and ampicillin, independently, and were submitted, after an on- and off-plate protein extraction, to MALDI Biotyper analysis, which yielded one average spectra per isolate and type of extraction. Overall, high performance was observed for classifiers detecting susceptible as well as ciprofloxacin- and tetracycline-resistant isolates. A maximum sensitivity and a precision of 92.3 and 81.2%, respectively, were reached. No significant prediction performance differences were observed between on- and off-plate types of protein extractions. Finally, three putative AMR biomarkers for fluoroquinolones, tetracyclines, and aminoglycosides were identified during the current study. Combination of MALDI-TOF MS and machine learning could be an efficient and inexpensive tool to swiftly screen certain AMR in foodborne pathogens, which may enable a rapid initiation of a precise, targeted antibiotic treatment

    Secure biometric authentication with improved accuracy

    Get PDF
    We propose a new hybrid protocol for cryptographically secure biometric authentication. The main advantages of the proposed protocol over previous solutions can be summarised as follows: (1) potential for much better accuracy using different types of biometric signals, including behavioural ones; and (2) improved user privacy, since user identities are not transmitted at any point in the protocol execution. The new protocol takes advantage of state-of-the-art identification classifiers, which provide not only better accuracy, but also the possibility to perform authentication without knowing who the user claims to be. Cryptographic security is based on the Paillier public key encryption scheme

    Free-standing polyelectrolyte membranes made of chitosan and alginate

    Get PDF
    Free-standing films have increasing applications in the biomedical field as drug delivery systems for wound healing and tissue engineering. Here, we prepared free-standing membranes by the layer-by-layer assembly of chitosan and alginate, two widely used biomaterials. Our aim was to produce a thick membrane and to study the permeation of model drugs and the adhesion of muscle cells. We first defined the optimal growth conditions in terms of pH and alginate concentration. The membranes could be easily detached from polystyrene or polypropylene substrate without any postprocessing step. The dry thickness was varied over a large range from 4 to 35 μm. A 2-fold swelling was observed by confocal microscopy when they were immersed in PBS. In addition, we quantified the permeation of model drugs (fluorescent dextrans) through the free-standing membrane, which depended on the dextran molecular weight. Finally, we showed that myoblast cells exhibited a preferential adhesion on the alginate-ending membrane as compared to the chitosan-ending membrane or to the substrate side.This work was financially supported by Foundation for Science and Technology (FCT) through the Scholarship SFRH/BD/64601/2009 granted to S.G.C. C.M. is indebted to Grenoble INP for financial support via a postdoctoral fellowship. This work was supported by the European Commission (FP7 Program) via a European Research Council starting grant (BIOMIM, GA 259370 to C.P.). C.P. is also grateful to Institut Universitaire de France and to Grenoble Institute of Technology for financial support. We thank Isabelle Paintrand for her technical help with the confocal apparatus and Patrick Chaudouet for his help with SEM imaging

    Analysis of the seasonal variation in biochemical composition of

    Full text link
    The biochemical composition of Daphnia magna Straus, the dominant planktonic crustacean of the waste stabilisation pond of Differdange (Grand-Duchy of Luxembourg), was quantitatively determined from October 1993 to July 1994. Over the sampling period, the average composition (mean ± S.D.) was 271 ± 64 mg proteins.g-1 dry weight (DW), 100 ± 28 mg lipids.g-1 (DW), 96 ± 58 μg carotenoids.g-1 (DW), 49 ± 14 mg chitin.g-1 (DW) and 125 ± 78 mg ash.g-1 (DW). The seasonal variations of the biochemical composition were related to several ecological variables (water temperature, dissolved oxygen concentration, pH, water transparency, chlorophyll a concentration and D. magna biomass). The chitin content was positively correlated to the water temperature as a result of the strong influence of this later variable on the moulting rate of the daphnids and, subsequently, on the chitin synthesis by these organisms. The carotenoid content was positively correlated to the water transparency as a result of their photoprotective role in daphnids. The fluctuations of the lipid, protein and ash levels in D. magna depended to the food availability. Despite a seasonal variation in the biochemical composition, D. magna appeared to have adequate lipid and protein levels to be used in aquaculture. Its carotenoid content is similar to fish meals used to color salmonid flesh and these organisms could be used for this purpose. The prospect of using D. magna for chitin extraction is worth considering with respect to its significant chitin content, especially if highly valuable applications are aimed

    Occurrence and persistence of bacterial and viral faecal indicators in wastewater biofilms

    Full text link
    International audienceBiofilms within wastewater treatment plants can capture enteric microorganisms initially present in the water phase immobilising them either definitively or temporarily. Consequently, fates of microorganisms may totally change depending on whether they interact or not with biofilms. In this study, we assessed the stability of wastewater biofilms comparing the evolution of the concentrations of bacteria (heterotrophic plate count [HPC], thermotolerant coliforms [TC]) and viral (somatic coliphages [SC] and F-specific phages [F+]) indicators in the biofilms and in the corresponding wastewaters at 4 and 20 °C. Additionally, we assessed the monthly occurrence of these bacterial and viral indicators as well as of pathogenic protozoa (Cryptosporidium oocysts and Giardia cysts) in three native wastewater biofilms for four months. Our results show that viral indicators (SC and F+) persist longer in biofilms than in the corresponding wastewaters at 4 °C as well as at 20 °C. In contrast, persistence of bacterial indicators (TC and HPC) depends on both the temperature and the matrix. Differences between viral and bacterial persistence are discussed. Monthly analysis of native wastewater biofilms shows that bacterial and viral indicators, as well as Cryptosporidium oocysts and Giardia cysts, attach to wastewater biofilms to a concentration that remains stable in time, probably as a result of a dynamic equilibrium between attachment and detachment processes

    Seasonal depth-related gradients in virioplankton: standing stock and relationships with microbial communities in Lake Pavin (France)

    Full text link
    International audienceThis study presents a depth-related survey of virioplankton abundance in Lake Pavin (Massif Central, France), in relation to the abundances of heterotrophic prokaryotes, picocyanobacteria (Pcy), autotrophic picoeukaryotes (Peu), and of autotrophic (ANF) and heterotrophic (HNF) nanoflagellates. The sampling strategy was designed to be representative of the physico-chemical gradients of the whole water column of the lake, and the seasonal variability as well. In mixolimnic surface waters, all communities were present and viral abundance peaked in summer and autumn. Viral abundance was significantly correlated (p < 0.001) with Pcy, Peu, and ANF, indicating that cyanophages and perhaps other phytoplankton viruses represent a significant pool of viral standing stocks in the mixolimnion of Lake Pavin. Microautotrophs were absent in the deep monimolimnic water masses, where viruses and heterotrophic prokaryotes exhibited highest seasonal abundances in summer and/or autumn and were significantly correlated (p < 0.001) to each other. This indicates that the anoxic monimolimnion of Lake Pavin is an exclusive habitat for viruses and heterotrophic prokaryotes. We conclude that in this habitat, host availability is prevalent over other factors (temperature, oxygen, nutrients, grazers) in favoring viral proliferation

    Depth-Related Gradients of Viral Activity in Lake Pavin

    Full text link
    High-resolution vertical sampling and determination of viral and prokaryotic parameters in a deep volcanic lake shows that in the absence of thermal stratification but within light, oxygen, and chlorophyll gradients, host availability empirically is prevalent over the physical and chemical environments and favors lytic over lysogenic “viral life cycles.

    Virioplankton 'pegylation' : use of PEG (polyethylene glycol) to concentrate and purify viruses in pelagic ecosystems

    Full text link
    We have described the use of Polyethylene glycol (PEG) for the precipitation of natural communities of aquatic viruses, and its comparison with the usual concentration method based on ultracentrifugation. Experimental samples were obtained from different freshwater ecosystems whose trophic status varied. Based on transmission electron microscope observations and counting of phage-shaped particles, our results showed that the greatest recovery efficiency for all ecosystems was obtained when we used the PEG protocol. On average, this protocol allowed the recovery of >2-fold more viruses, compared to ultracentrifugation. In addition, the diversity of virioplankton, based on genomic size profiling using pulsed field gel electrophoresis, was higher and better discriminated when we used the PEG method. We conclude that pegylation offers a valid, simple and cheaper alternative method to ultracentrifugation, for the concentration and the purification of pelagic viruses

    NanoSIMS50 analyses of Ar/ 18O 2 plasma-treated Escherichia coli bacteria

    Full text link
    International audienceReactive oxygen species (ROS) can be produced by electrical discharges and can be transported in uncharged regions by gas flows, in the so-called afterglows. These species are well known to have bactericidal effects but interaction mechanisms that occur with living micro-organisms remain misunderstood. In order to better understand these interactions, new analysis approaches are necessary. High-lateral-resolution secondary ion mass spectrometry (NanoSIMS) is one of the most promising ways of retrieving additional information on bacteria plasma inactivation mechanisms by combining isotopic imaging of plasma-treated bacteria and the use of 18O 2 as process gas. Indeed, this technology combines a lateral resolution of a few tens of nanometres that is sufficient to image the interior of bacteria, and a high mass resolution allowing detection of isotopes present in low quantities (a few ppm or lower) within the bacteria. The present paper deals with Ar- 18O 2 (2%) plasma treatment, through low-pressure microwave late afterglows, of Escherichia coli bacteria and their elemental and isotopic imaging by NanoSIMS. E. coli bacteria have been exposed to this reactive medium for varying treatment duration while keeping all other parameters unchanged. Our main goal is to determine whether the quantity of 18O fixed in treated bacteria and the NanoSIMS50 lateral resolution are sufficient to give additional information on E. coli bacteria-plasma interaction. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
    • …
    corecore