846 research outputs found
Epistemic and Ontic Quantum Realities
Quantum theory has provoked intense discussions about its interpretation since its pioneer days. One of the few scientists who have been continuously engaged in this development from both physical and philosophical perspectives is Carl Friedrich von Weizsaecker. The questions he posed were and are inspiring for many, including the authors of this contribution. Weizsaecker developed Bohr's view of quantum theory as a theory of knowledge. We show that such an epistemic perspective can be consistently complemented by Einstein's ontically oriented position
Bungeâs Mathematical Structuralism Is Not a Fiction
In this paper, I explore Bungeâs fictionism in philosophy of mathematics. After an overview of Bungeâs views, in particular his mathematical structuralism, I argue that the comparison between mathematical objects and fictions ultimately fails. I then sketch a different ontology for mathematics, based on Thomassonâs metaphysical work. I conclude that mathematics deserves its own ontology, and that, in the end, much work remains to be done to clarify the various forms of dependence that are involved in mathematical knowledge, in particular its dependence on mental/brain states and material objects
Controlled assembly of SNAP-PNA-fluorophore systems on DNA templates to produce fluorescence resonance energy transfer
The SNAP protein is a widely used self-labeling tag that can be used for tracking protein localization and trafficking in living systems. A model system providing controlled alignment of SNAP-tag units can provide a new way to study clustering of fusion proteins. In this work, fluorescent SNAP-PNA conjugates were controllably assembled on DNA frameworks forming dimers, trimers, and tetramers. Modification of peptide nucleic acid (PNA) with the O6-benzyl guanine (BG) group allowed the generation of site-selective covalent links between PNA and the SNAP protein. The modified BG-PNAs were labeled with fluorescent Atto dyes and subsequently chemo-selectively conjugated to SNAP protein. Efficient assembly into dimer and oligomer forms was verified via size exclusion chromatography (SEC), electrophoresis (SDS-PAGE), and fluorescence spectroscopy. DNA directed assembly of homo- and hetero-dimers of SNAP-PNA constructs induced homo- and hetero-FRET, respectively. Longer DNA scaffolds controllably aligned similar fluorescent SNAP-PNA constructs into higher oligomers exhibiting homo-FRET. The combined SEC and homo-FRET studies indicated the 1:1 and saturated assemblies of SNAP-PNA-fluorophore:DNA formed preferentially in this system. This suggested a kinetic/stoichiometric model of assembly rather than binomially distributed products. These BG-PNA-fluorophore building blocks allow facile introduction of fluorophores and/or assembly directing moieties onto any protein containing SNAP. Template directed assembly of PNA modified SNAP proteins may be used to investigate clustering behavior both with and without fluorescent labels which may find use in the study of assembly processes in cells
Linear optical properties of one-dimensional Frenkel exciton systems with intersite energy correlations
We analyze the effects of intersite energy correlations on the linear optical
properties of one-dimensional disordered Frenkel exciton systems. The
absorption line width and the factor of radiative rate enhancement are studied
as a function of the correlation length of the disorder. The absorption line
width monotonously approaches the seeding degree of disorder on increasing the
correlation length. On the contrary, the factor of radiative rate enhancement
shows a non-monotonous trend, indicating a complicated scenario of the exciton
localization in correlated systems. The concept of coherently bound molecules
is exploited to explain the numerical results, showing good agreement with
theory. Some recent experiments are discussed in the light of the present
theory.Comment: 18 pages, 3 figues, REVTeX, to appear in Physical Review
In-situ observation of Asian pollution transported into the Arctic lowermost stratosphere
On a research flight on 10 July 2008, the German research aircraft Falcon sampled an air mass with unusually high carbon monoxide (CO), peroxyacetyl nitrate (PAN) and water vapour (H<sub>2</sub>O) mixing ratios in the Arctic lowermost stratosphere. The air mass was encountered twice at an altitude of 11.3 km, ~800 m above the dynamical tropopause. In-situ measurements of ozone, NO, and NO<sub>y</sub> indicate that this layer was a mixed air mass containing both air from the troposphere and stratosphere. Backward trajectory and Lagrangian particle dispersion model analysis suggest that the Falcon sampled the top of a polluted air mass originating from the coastal regions of East Asia. The anthropogenic pollution plume experienced strong up-lift in a warm conveyor belt (WCB) located over the Russian east-coast. Subsequently the Asian air mass was transported across the North Pole into the sampling area, elevating the local tropopause by up to ~3 km. Mixing with surrounding Arctic stratospheric air most likely took place during the horizontal transport when the tropospheric streamer was stretched into long and narrow filaments. The mechanism illustrated in this study possibly presents an important pathway to transport pollution into the polar tropopause region
Airborne observations of the Eyjafjalla volcano ash cloud over Europe during air space closure in April and May 2010
Š Author(s) 2011. This work is distributed under the Creative Commons Attribution 3.0 LicenseAirborne lidar and in-situ measurements of aerosols and trace gases were performed in volcanic ash plumes over Europe between Southern Germany and Iceland with the Falcon aircraft during the eruption period of the Eyjafjalla1 volcano between 19 April and 18 May 2010. Flight planning and measurement analyses were supported by a refined Meteosat ash product and trajectory model analysis. The volcanic ash plume was observed with lidar directly over the volcano and up to a distance of 2700 km downwind, and up to 120 h plume ages. Aged ash layers were between a few 100 m to 3 km deep, occurred between 1 and 7 km altitude, and were typically 100 to 300 km wide. Particles collected by impactors had diameters up to 20 Οm diameter, with size and age dependent composition. Ash mass concentrations were derived from optical particle spectrometers for a particle density of 2.6 g cm-3 and various values of the refractive index (RI, real part: 1.59; 3 values for the imaginary part: 0, 0.004 and 0.008). The mass concentrations, effective diameters and related optical properties were compared with ground-based lidar observations. Theoretical considerations of particle sedimentation constrain the particle diameters to those obtained for the lower RI values. The ash mass concentration results have an uncertainty of a factor of two. The maximum ash mass concentration encountered during the 17 flights with 34 ash plume penetrations was below 1 mg m-3. The Falcon flew in ash clouds up to about 0.8 mg m-3 for a few minutes and in an ash cloud with approximately 0.2 mg -3 mean-concentration for about one hour without engine damage. The ash plumes were rather dry and correlated with considerable CO and SO2 increases and O3 decreases. To first order, ash concentration and SO2 mixing ratio in the plumes decreased by a factor of two within less than a day. In fresh plumes, the SO2 and CO concentration increases were correlated with the ash mass concentration. The ash plumes were often visible slantwise as faint dark layers, even for concentrations below 0.1 mg m-3. The large abundance of volatile Aitken mode particles suggests previous nucleation of sulfuric acid droplets. The effective diameters range between 0.2 and 3 Οm with considerable surface and volume contributions from the Aitken and coarse mode aerosol, respectively. The distal ash mass flux on 2 May was of the order of 500 (240-1600) kgs -1. The volcano induced about 10 (2.5-50) Tg of distal ash mass and about 3 (0.6-23) Tg of SO2 during the whole eruption period. The results of the Falcon flights were used to support the responsible agencies in their decisions concerning air traffic in the presence of volcanic ash.Peer reviewe
Ferredoxin:NADP(H) Oxidoreductase Abundance and Location Influences Redox Poise and Stress Tolerance
In linear photosynthetic electron transport, ferredoxin:NADP(H) oxidoreductase (FNR) transfers electrons from ferredoxin (Fd) to NADP(+). Both NADPH and reduced Fd (Fd(red)) are required for reductive assimilation and light/dark activation/deactivation of enzymes. FNR is therefore a hub, connecting photosynthetic electron transport to chloroplast redox metabolism. A correlation between FNR content and tolerance to oxidative stress is well established, although the precise mechanism remains unclear. We investigated the impact of altered FNR content and localization on electron transport and superoxide radical evolution in isolated thylakoids, and probed resulting changes in redox homeostasis, expression of oxidative stress markers, and tolerance to high light in planta. Our data indicate that the ratio of Fd(red) to FNR is critical, with either too much or too little FNR potentially leading to increased superoxide production, and perception of oxidative stress at the level of gene transcription. In FNR overexpressing plants, which show more NADP(H) and glutathione pools, improved tolerance to high-light stress indicates that disturbance of chloroplast redox poise and increased free radical generation may help âprimeâ the plant and induce protective mechanisms. In fnr1 knock-outs, the NADP(H) and glutathione pools are more oxidized relative to the wild type, and the photoprotective effect is absent despite perception of oxidative stress at the level of gene transcription
Dynamic relaxation of the elastic properties of hard carbon films
The effect of enhanced atomic mobility on the growth of hard carbon films was examined. Tetrahedrally bonded amorphous carbon films were deposited by condensing energetic carbon ions using an arc-discharge deposition method. The deposition temperature varied between 50 and 400â°C. The dependence of elastic properties on deposition temperature was examined by determining the frequency-dependent propagation velocity of ultrasonic surface acoustic waves induced by a laser. A remarkable decrease in elastic coefficient was revealed above the deposition temperature of 300â°C and complete relaxation was obtained at 400â°C. This observation was analyzed by using a simple model which was in turn supported by molecular dynamics simulations. The relaxation turns out to be a thermally activated, dynamic process with an activation energy of 0.57 eV. Possible relaxation mechanisms associated with the migration of atoms or defects on a growing surface are discussed.Peer reviewe
Complementarity and Scientific Rationality
Bohr's interpretation of quantum mechanics has been criticized as incoherent
and opportunistic, and based on doubtful philosophical premises. If so Bohr's
influence, in the pre-war period of 1927-1939, is the harder to explain, and
the acceptance of his approach to quantum mechanics over de Broglie's had no
reasonable foundation. But Bohr's interpretation changed little from the time
of its first appearance, and stood independent of any philosophical
presuppositions. The principle of complementarity is itself best read as a
conjecture of unusually wide scope, on the nature and future course of
explanations in the sciences (and not only the physical sciences). If it must
be judged a failure today, it is not because of any internal inconsistency.Comment: 29 page
Realism and Objectivism in Quantum Mechanics
The present study attempts to provide a consistent and coherent account of
what the world could be like, given the conceptual framework and results of
contemporary quantum theory. It is suggested that standard quantum mechanics
can, and indeed should, be understood as a realist theory within its domain of
application. It is pointed out, however, that a viable realist interpretation
of quantum theory requires the abandonment or radical revision of the classical
conception of physical reality and its traditional philosophical
presuppositions. It is argued, in this direction, that the conceptualization of
the nature of reality, as arising out of our most basic physical theory, calls
for a kind of contextual realism. Within the domain of quantum mechanics,
knowledge of 'reality in itself', 'the real such as it truly is' independent of
the way it is contextualized, is impossible in principle. In this connection,
the meaning of objectivity in quantum mechanics is analyzed, whilst the
important question concerning the nature of quantum objects is explored.Comment: 20 pages. arXiv admin note: substantial text overlap with
arXiv:0811.3696, arXiv:quant-ph/0502099, arXiv:0904.2702, arXiv:0904.2859,
arXiv:0905.013
- âŚ