355 research outputs found
Electrostatic extraction of cold molecules from a cryogenic reservoir
We present a method which delivers a continuous, high-density beam of slow
and internally cold polar molecules. In our source, warm molecules are first
cooled by collisions with a cryogenic helium buffer gas. Cold molecules are
then extracted by means of an electrostatic quadrupole guide. For ND the
source produces fluxes up to molecules/s with
peak densities up to molecules/cm. For
HCO the population of rovibrational states is monitored by depletion
spectroscopy, resulting in single-state populations up to .Comment: 4 pages, 4 figures, changes to the text, updated figures and
reference
Development of a backward-mode photoacoustic microscope using a Fabry-Perot sensor
Optical-resolution photoacoustic microscopy (PAM) has been shown to enable the acquisition of high resolution (μm) functional and anatomical images. For backward-mode operation, conventional piezoelectric ultrasound transducers need to be placed far away from the signal source due to their opacity and size. This can result in reduced acoustic sensitivity. Planar Fabry-Perot polymer film interferometer (FPI) sensors have the potential to overcome this limitation since they are transparent to the excitation wavelength, can be placed immediately adjacent to the signal source for high acoustic sensitivity, and offer a broadband frequency response (0 –50 MHz). In this study, we present a high frame rate, backward-mode OR-PAM system based on a planar FPI ultrasound sensor. A ns-pulsed laser provides excitation pulses (<200 nJ, maximum pulse repetition frequency = 200 kHz, 532 nm) to generate photoacoustic waves that are detected using a planar FPI sensor interrogated at 765-781 nm. For backwardmode operation and highest acoustic sensitivity, the excitation and interrogation beams are coaxially aligned and rasterscanned. The optical transfer function of the sensor, the spatial resolution and the detection sensitivity were determined to characterise the set-up. Images of a leaf phantom and first in vivo images of zebrafish larvae were acquired. This approach will enable fast 3D OR-PAM with high resolution and high sensitivity for functional and molecular imaging applications. FPI-based ultrasound detection also has the potential to enable dual-mode optical- and acousticresolution PAM and the integration of photoacoustic imaging with purely optical modalities such as multi-photon microscopy
Complex Numbers, Quantum Mechanics and the Beginning of Time
A basic problem in quantizing a field in curved space is the decomposition of
the classical modes in positive and negative frequency. The decomposition is
equivalent to a choice of a complex structure in the space of classical
solutions. In our construction the real tunneling geometries provide the link
between the this complex structure and analytic properties of the classical
solutions in a Riemannian section of space. This is related to the Osterwalder-
Schrader approach to Euclidean field theory.Comment: 27 pages LATEX, UCSBTH-93-0
Chemoenzymatic Probes for Detecting and Imaging Fucose-α(1-2)-galactose Glycan Biomarkers
The disaccharide motif fucose-α(1-2)-galactose (Fucα(1-2)Gal) is involved in many important physiological processes, such as learning and memory, inflammation, asthma, and tumorigenesis. However, the size and structural complexity of Fucα(1-2)Gal-containing glycans have posed a significant challenge to their detection. We report a new chemoenzymatic strategy for the rapid, sensitive detection of Fucα(1-2)Gal glycans. We demonstrate that the approach is highly selective for the Fucα(1-2)Gal motif, detects a variety of complex glycans and glycoproteins, and can be used to profile the relative abundance of the motif on live cells, discriminating malignant from normal cells. This approach represents a new potential strategy for biomarker detection and expands the technologies available for understanding the roles of this important class of carbohydrates in physiology and disease
The fluvial architecture of buried floodplain sediments of the Weiße Elster River (Germany) revealed by a novel method combination of drill cores with two‐dimensional and spatially resolved geophysical measurements
The complex and non-linear fluvial river dynamics are characterized by repeated periods of fluvial erosion and re-deposition in different parts of the floodplain. Understanding the fluvial architecture (i.e. the three-dimensional arrangement and genetic interconnectedness of different sediment types) is therefore fundamental to obtain well-based information about controlling factors. However, investigating the fluvial architecture in buried floodplain deposits without natural exposures is challenging. We studied the fluvial architecture of the middle Weiße Elster floodplain in Central Germany, an extraordinary long-standing archive of Holocene flooding and landscape changes in sensitive loess-covered Central European landscapes. We applied a novel systematic approach by coupling two-dimensional transects of electrical resistivity tomography (ERT) measurements and closely spaced core drillings with spatially resolved measurements of electromagnetic induction (EMI) of larger floodplain areas at three study sites. This allowed for (i) time and cost-efficient core drillings based on preceding ERT measurements and (ii) spatially scaling up the main elements of the fluvial architecture, such as the distribution of thick silt-clay overbank deposits and paleochannel patterns from the floodplain transects to larger surrounding areas. We found that fine-grained sand and silt-clay overbank deposits overlying basal gravels were deposited during several periods of intensive flooding. Those were separated from each other by periods of reduced flooding, allowing soil formation. However, the overbank deposits were severely laterally eroded before and during each sedimentation period. This was probably linked with pronounced meandering or even braiding of the river. Our preliminary chronological classification suggests that first fine-grained sedimentation must have occurred during the Early to Middle Holocene, and the last phase of lateral erosion and sedimentation during the Little Ice Age. Our study demonstrates the high archive potential of the buried fluvial sediments of the middle Weiße Elster floodplain and provides a promising time and cost-effective approach for future studies of buried floodplain sediments
A backward-mode optical-resolution photoacoustic microscope for 3D imaging using a planar Fabry-Pérot sensor
Optical-resolution photoacoustic microscopy (OR-PAM) combines high spatial resolution and strong absorption-based contrast in tissue, which has enabled structural and spectroscopic imaging of endogenous chromophores, primarily hemoglobin. This makes OR-PAM an important tool for preclinical vascular research. Conventional piezoelectric ultrasound transducers often need to be placed far away from the signal source due to their opacity, which results in reduced acoustic sensitivity. Optical ultrasound sensors are an alternative as their transparency allows them to be positioned close to the sample for minimal source-detector distances. In this work, a backward-mode OR-PAM system based on a planar Fabry-Pérot ultrasound sensor and coaxially aligned excitation and interrogation beams was developed. Two 3D imaging modes, using raster-scanning for enhanced image quality or continuous-scanning for fast imaging, were implemented and tested on a leaf skeleton phantom. In fast imaging mode, a scan-rate of 100,000 A-lines/s could be achieved. In raster-scanning mode, 3D images of a zebrafish embryo were acquired in vivo. The transparency of the FP sensor in the visible and near-infrared wavelength region makes it potentially suitable for combined functional and molecular imaging using OR-PAM and multi-photon fluorescence microscopy
A comparison of echocardiographic and electron beam computed tomographic assessment of aortic valve area in patients with valvular aortic stenosis
The purpose of this study was to compare electron beam computed tomography (EBT) with transthoracic echocardiography (TTE) in determining aortic valve area (AVA). Thirty patients (9 females, 21 males) underwent a contrast-enhanced EBT scan (e-Speed, GE, San Francisco, CA, USA) and TTE within 17 ± 12 days. In end-inspiratory breath hold, a prospectively ecg-triggered scan was acquired with a beam speed of 50–100 ms, a collimation of 2 × 1.5 mm and an increment of 3.0 mm. The AVA was measured with planimetry. A complete TTE study was performed in all patients, and the AVA was computed using the continuity equation. There was close correlation between AVA measured with EBT and AVA assessed with TTE (r = 0.60, P < 0.01). The AVA measured with EBT was 0.51 ± 0.46 cm2 larger than the AVA calculated with TTE measurements. EBT appeared to be a valuable non-invasive method to measure the AVA. EBT measures the anatomical AVA, while with TTE the functional AVA is calculated, which explains the difference in results between the methods
Thermotropic phase behavior and headgroup interactions of the nonbilayer lipids phosphatidylethanolamine and monogalactosyldiacylglycerol in the dry state
<p>Abstract</p> <p>Background</p> <p>Although biological membranes are organized as lipid bilayers, they contain a substantial fraction of lipids that have a strong tendency to adopt a nonlamellar, most often inverted hexagonal (H<sub>II</sub>) phase. The polymorphic phase behavior of such nonbilayer lipids has been studied previously with a variety of methods in the fully hydrated state or at different degrees of dehydration. Here, we present a study of the thermotropic phase behavior of the nonbilayer lipids egg phosphatidylethanolamine (EPE) and monogalactosyldiacylglycerol (MGDG) with a focus on interactions between the lipid molecules in the interfacial and headgroup regions.</p> <p>Results</p> <p>Liposomes were investigated in the dry state by Fourier-transform Infrared (FTIR) spectroscopy and Differential Scanning Calorimetry (DSC). Dry EPE showed a gel to liquid-crystalline phase transition below 0°C and a liquid-crystalline to H<sub>II </sub>transition at 100°C. MGDG, on the other hand, was in the liquid-crystalline phase down to -30°C and showed a nonbilayer transition at about 85°C. Mixtures (1:1 by mass) with two different phosphatidylcholines (PC) formed bilayers with no evidence for nonbilayer transitions up to 120°C. FTIR spectroscopy revealed complex interactions between the nonbilayer lipids and PC. Strong H-bonding interactions occurred between the sugar headgroup of MGDG and the phosphate, carbonyl and choline groups of PC. Similarly, the ethanolamine moiety of EPE was H-bonded to the carbonyl and choline groups of PC and probably interacted through charge pairing with the phosphate group.</p> <p>Conclusions</p> <p>This study provides a comprehensive characterization of dry membranes containing the two most important nonbilayer lipids (PE and MGDG) in living cells. These data will be of particular relevance for the analysis of interactions between membranes and low molecular weight solutes or soluble proteins that are presumably involved in cellular protection during anhydrobiosis.</p
Does Environmental Enrichment Reduce Stress? An Integrated Measure of Corticosterone from Feathers Provides a Novel Perspective
Enrichment is widely used as tool for managing fearfulness, undesirable behaviors, and stress in captive animals, and for studying exploration and personality. Inconsistencies in previous studies of physiological and behavioral responses to enrichment led us to hypothesize that enrichment and its removal are stressful environmental changes to which the hormone corticosterone and fearfulness, activity, and exploration behaviors ought to be sensitive. We conducted two experiments with a captive population of wild-caught Clark's nutcrackers (Nucifraga columbiana) to assess responses to short- (10-d) and long-term (3-mo) enrichment, their removal, and the influence of novelty, within the same animal. Variation in an integrated measure of corticosterone from feathers, combined with video recordings of behaviors, suggests that how individuals perceive enrichment and its removal depends on the duration of exposure. Short- and long-term enrichment elicited different physiological responses, with the former acting as a stressor and birds exhibiting acclimation to the latter. Non-novel enrichment evoked the strongest corticosterone responses of all the treatments, suggesting that the second exposure to the same objects acted as a physiological cue, and that acclimation was overridden by negative past experience. Birds showed weak behavioral responses that were not related to corticosterone. By demonstrating that an integrated measure of glucocorticoid physiology varies significantly with changes to enrichment in the absence of agonistic interactions, our study sheds light on potential mechanisms driving physiological and behavioral responses to environmental change
- …