733 research outputs found
Analytische Modellierung des Zeitverhaltens und der Verlustleistung von CMOS-Gattern
In modernen CMOS-Technologien werden die Verzögerungszeit, die Ausgangsflankensteilheit und der Querstrom eines Gatters sowohl durch die LastkapazitĂ€t als auch durch die Steilheit des Eingangssignals beeinflusst. Die heute verwendeten Technologiebibliotheken beinhalten Tabellenmodelle mit 25 oder mehr StĂŒtzpunkten dieser AbhĂ€ngigkeiten, woraus durch Interpolation die benötigten Zwischenwerte berechnet werden. Bisherige Versuche, analytische Modelle abzuleiten beruhten darauf, den Querstrom zu vernachlĂ€ssigen oder Transistorströme als stĂŒckweise linear anzunĂ€hern. Der hier gezeigte Ansatz beruht auf einer nĂ€herungsweisen Lösung der Differentialgleichung, die aus den beiden Transistorströmen und einer LastkapazitĂ€t besteht und damit das Schaltverhalten eines Inverters beschreibt. Mit wenigen Technologieparametern können daraus fĂŒr einen beliebig dimensionierten Inverter die fĂŒr eine Timing- und Verlustleistungsanalyse notwendigen GröĂen berechnet werden. Das Modell erreicht bei einem Vergleich zu Referenzwerten aus SPICE Simulationen eine Genauigkeit von typischerweise 5%.</p><p style="line-height: 20px;">In modern CMOS-technologies the gate delay, output transition time and the short-circuit current depend on the capacitive load as well as on the input transition time. Todayâs technology libraries use table models with 25 or more samples for these dependencies. Intermediate values have to be calculated through interpolation. Attempts to derive analytical models are based on neglecting the short-circuit current or approximating it by piecewise linear functions. The approach shown in this paper provides an approximate solution for the differential equation describing the dynamic behavor of an inverter circuit. It includes the influence of both transistor currents and a single load capacitance. The required values for timing and power analysis can be calculated with a small set of technology parameters for an arbitrary designed inverter. Compared to reference values extracted from SPICE simulations, the model achieves a typical precision of 5%
Hardwarearchitektur fĂŒr einen universellen LDPC Decoder
Im vorliegenden Beitrag wird eine universelle Decoderarchitektur fĂŒr einen Low-Density Parity-Check (LDPC) Code Decoder vorgestellt. Anders als bei den in der Literatur hĂ€ufig beschriebenen Architekturen fĂŒr strukturierte Codes ist die hier vorgestellte Architektur frei programmierbar, so dass jeder beliebige LDPC Code durch eine Ănderung der Initialisierung des Speichers fĂŒr die PrĂŒfmatrix mit derselben Hardware decodiert werden kann. Die gröĂte Herausforderung beim Entwurf von teilparallelen LDPC Decoder Architekturen liegt im konfliktfreien Datenaustausch zwischen mehreren parallelen Speichern und Berechnungseinheiten, wozu ein Mapping und Scheduling Algorithmus benötigt wird. Der hier vorgestellte Algorithmus stĂŒtzt sich auf Graphentheorie und findet fĂŒr jeden beliebigen LDPC Code eine fĂŒr die Architektur optimale Lösung. Damit sind keine Wartezyklen notwendig und die ParallelitĂ€t der Architektur wird zu jedem Zeitpunkt voll ausgenutzt
Linearly polarized GHz magnetization dynamics of spin helix modes in the ferrimagnetic insulator CuOSeO
Linear dichroism -- the polarization dependent absorption of electromagnetic
waves -- is routinely exploited in applications as diverse as structure
determination of DNA or polarization filters in optical technologies. Here
filamentary absorbers with a large length-to-width ratio are a prerequisite.
For magnetization dynamics in the few GHz frequency regime strictly linear
dichroism was not observed for more than eight decades. Here, we show that the
bulk chiral magnet CuOSeO exhibits linearly polarized magnetization
dynamics at an unexpectedly small frequency of about 2 GHz. Unlike optical
filters that are assembled from filamentary absorbers, the magnet provides
linear polarization as a bulk material for an extremely wide range of
length-to-width ratios. In addition, the polarization plane of a given mode can
be switched by 90 via a tiny variation in width. Our findings shed a
new light on magnetization dynamics in that ferrimagnetic ordering combined
with anisotropic exchange interaction offers strictly linear polarization and
cross-polarized modes for a broad spectrum of sample shapes. The discovery
allows for novel design rules and optimization of microwave-to-magnon
transduction in emerging microwave technologies.Comment: 20 pages, 4 figure
A Phenomenological Description of the Non-Fermi-Liquid Phase of MnSi
In order to understand the non-Fermi-liquid behavior of MnSi under pressure
we propose a scenario on the basis of the multispiral state of the magnetic
moment.
This state can describe the recent critical experiment of the Bragg sphere in
the neutron scattering which is the key ingredient of the non-Fermi-liquid
behavior.Comment: 3 page
Configurable multiplier modules for an adaptive computing system
The importance of reconfigurable hardware is increasing steadily. For example, the primary approach of using adaptive systems based on programmable gate arrays and configurable routing resources has gone mainstream and high-performance programmable logic devices are rivaling traditional application-specific hardwired integrated circuits. Also, the idea of moving from the 2-D domain into a 3-D design which stacks several active layers above each other is gaining momentum in research and industry, to cope with the demand for smaller devices with a higher scale of integration. However, optimized arithmetic blocks in course-grain reconfigurable arrays as well as field-programmable architectures still play an important role. In countless digital systems and signal processing applications, the multiplication is one of the critical challenges, where in many cases a trade-off between area usage and data throughput has to be made. But the a priori choice of word-length and number representation can also be replaced by a dynamic choice at run-time, in order to improve flexibility, area efficiency and the level of parallelism in computation. In this contribution, we look at an adaptive computing system called 3-D-SoftChip to point out what parameters are crucial to implement flexible multiplier blocks into optimized elements for accelerated processing. The 3-D-SoftChip architecture uses a novel approach to 3-dimensional integration based on flip-chip bonding with indium bumps. The modular construction, the introduction of interfaces to realize the exchange of intermediate data, and the reconfigurable sign handling approach will be explained, as well as a beneficial way to handle and distribute the numerous required control signals
Konzeption und Entwurf einer auf Petri-Netzen basierenden programmierbaren Kontrollschaltung
Petri-Netze eignen sich aufgrund der direkten Darstellbarkeit von NebenlĂ€ufigkeiten und leistungsfĂ€higer Analyseverfahren zur Beschreibung von komplexen KontrollablĂ€ufen. Die hier vorgestellte PNDU (Petri Net Decision Unit) ist ein programmierbarer Hardware- Interpreter fĂŒr Kontrollalgorithmen, die durch Petri-Netze beschrieben werden. Die Petri-Netze werden kodiert in einem Speicher abgelegt und unter Einbeziehung der Eingangssignale und interner ZustĂ€nde nach einem festgelegten Algorithmus abgearbeitet. Der implizite Wartezustand der PNDU motiviert in Hinblick auf den Einsatz in eingebetteten, batteriebetriebenen GerĂ€ten eine asynchrone Realisierung. Die PNDU wurde mit VHDL als synchrone und vergleichend dazu als selbstgetaktete Schaltung entworfen
Comparison of reconfigurable structures for flexible word-length multiplication
Binary multiplication continues to be one of the essential arithmetic operations in digital circuits. Even though field-programmable gate arrays (FPGAs) are becoming more and more powerful these days, the vendors cannot avoid implementing multiplications with high word-lengths using embedded blocks instead of configurable logic. But on the other hand, the circuit's efficiency decreases if the provided word-length of the hard-wired multipliers exceeds the precision requirements of the algorithm mapped into the FPGA. Thus it is beneficial to use multiplier blocks with configurable word-length, optimized for area, speed and power dissipation, e.g. regarding digital signal processing (DSP) applications. <br><br> In this contribution, we present different approaches and structures for the realization of a multiplication with variable precision and perform an objective comparison. This includes one approach based on a modified Baugh and Wooley algorithm and three structures using Booth's arithmetic operand recoding with different array structures. All modules have the option to compute signed two's complement fix-point numbers either as an individual computing unit or interconnected to a superior array. Therefore, a high throughput at low precision through parallelism, or a high precision through concatenation can be achieved
- âŠ